

A Comprehensive Analysis of Apache
Doris Internals

Section 1: Executive Summary

Apache Doris is a modern, Massively Parallel Processing (MPP)-based real-time analytical
data warehouse engineered to deliver sub-second query performance on massive datasets.1
Since its donation to the Apache Software Foundation and subsequent graduation as a
Top-Level Project, Doris has established itself as a formidable tool for a wide range of
analytical applications, including high-concurrency reporting, ad-hoc analysis, and data lake
query acceleration.3 Its adoption by over 5,000 enterprises globally, including technology
giants like TikTok and Tencent, underscores its capability to handle demanding production
workloads.1 This report provides a deeply technical exegesis of the internal mechanisms that
underpin Apache Doris, dissecting its architecture, storage engine, query processing pipeline,
and data management operations to reveal the design principles that enable its performance
and scalability.

At the heart of Doris lies a deliberately simplified two-process architecture, comprising
Frontend (FE) and Backend (BE) nodes. This highly integrated model is a cornerstone of its
operational simplicity, significantly reducing the maintenance overhead often associated with
complex, multi-component big data ecosystems.1 The FE serves as the cluster's brain,
managing metadata, coordinating nodes, and meticulously planning queries, while the BEs act
as the workhorses, responsible for data storage and the physical execution of computational
tasks.

A pivotal aspect of Doris's evolution is its architectural duality. While rooted in a traditional
compute-storage coupled (Shared-Nothing) model that maximizes performance through data
locality, Doris has embraced a modern compute-storage decoupled architecture tailored for
cloud-native environments.6 This elastic model separates stateless compute resources from a
shared, low-cost storage layer, enabling independent scaling, fine-grained workload isolation,
and significant cost efficiencies—critical requirements for contemporary data platforms.

The system's remarkable performance is not the result of a single feature but a synergy of
sophisticated internal components. Its foundation is a columnar storage engine that minimizes

I/O and maximizes data compression, augmented by a hybrid row-columnar format to
accelerate point queries.2 Atop this storage layer, a state-of-the-art query execution engine
combines the raw CPU efficiency of vectorization with the high-concurrency capabilities of a
non-blocking Pipeline model.1 This execution is guided by an advanced query optimizer that
leverages both rule-based heuristics and cost-based analysis to craft highly efficient
distributed plans.10

This report aims to deconstruct these core components and their intricate interactions. It will
explore the physical and logical organization of data, the complete lifecycle of a query from
SQL text to final result set, the various mechanisms for data ingestion and maintenance, and
the advanced features like materialized views and multi-layered indexing that accelerate
performance. By providing a comprehensive analysis of the design trade-offs and engineering
principles embedded within Doris, this document serves as a definitive guide for data
architects, principal engineers, and database researchers seeking to understand and leverage
the full power of this next-generation analytical database.

Section 2: Core Architectural Principles

The architecture of Apache Doris is defined by a commitment to simplicity, scalability, and
high availability. Its design revolves around two primary processes—Frontend (FE) and
Backend (BE)—which collaborate to provide a unified and robust analytical platform. This
foundational model has evolved to support both tightly-coupled and decoupled deployment
patterns, offering flexibility to meet diverse performance and cost requirements.

2.1 The Two-Process Model: Frontend (FE) and Backend (BE)

Unlike many big data systems that rely on a complex stack of external components, Doris is
built on a highly integrated, self-contained architecture consisting of only two core service
types. This design choice is fundamental to its reputation for ease of deployment and low
operational overhead.2

Frontend (FE) Deep Dive

The Frontend (FE) node serves as the brain and coordinator of the entire Doris cluster. Its
responsibilities are multifaceted, encompassing client interaction, query management, and
cluster governance.6

●​ Responsibilities: The FE is the entry point for all client requests. It is compatible with the
MySQL protocol, a crucial feature that enables seamless integration with a vast
ecosystem of existing BI tools, SQL clients, and data integration platforms.2 Upon
receiving an SQL query, the FE performs parsing, semantic analysis, query planning, and
optimization to generate an efficient distributed execution plan.1 It also manages all
cluster-wide metadata, including table schemas, partitioning rules, data replica locations,
and user access privileges.6 Finally, it monitors the health of all Backend nodes and
orchestrates query execution across the cluster.

●​ High Availability (HA): To prevent a single point of failure, FE nodes are deployed in a
high-availability cluster. They use a Paxos-like consistency protocol, specifically Berkeley
DB Java Edition (BDB JE), to replicate metadata changes and elect a leader (Master).13
The cluster consists of three roles:
○​ Master: A single, elected FE node responsible for all metadata write operations.
○​ Follower: Replicates metadata from the Master and can serve metadata read

requests. In the event of a Master failure, a Follower is elected as the new Master.
○​ Observer: Replicates metadata and serves read requests but does not participate in

leader elections. Observers are primarily used to scale out the cluster's capacity for
handling concurrent queries without adding to the election overhead.1​
​
This multi-role setup ensures both metadata durability and high read throughput.
The FE processes themselves are horizontally scalable, allowing more nodes to be
added to handle increased client connections and query planning load.1

●​ Metadata Management: The FE stores all system metadata in its memory for fast
access and persists it to a local disk, typically in a directory named doris-meta.14 This
comprehensive metadata catalog is the single source of truth for the entire cluster's
state.

Backend (BE) Deep Dive

The Backend (BE) node is the workhorse of the Doris cluster, handling the heavy lifting of data
storage and computation.6

●​ Responsibilities: The primary functions of a BE are to store data tablets (the physical
shards of data) and to execute the query fragments dispatched by the FE.1 When a query
plan is executed, BEs scan local data, perform computations like filtering and
aggregation, and shuffle intermediate data to other BEs as required by the plan. BEs also

manage various background tasks essential for system health and performance, such as
data compaction, schema changes, and replica balancing.11

●​ Scalability and Data Reliability: BEs are designed for horizontal scalability; new nodes
can be added to the cluster to linearly increase both storage capacity and computational
power, supporting clusters with hundreds of nodes and petabytes of data.1 Data reliability
is ensured by storing multiple replicas of each data tablet on different BE nodes. A
quorum-based replication protocol is used for writes, ensuring that data is durable even
if some nodes fail.13 The system can automatically detect node failures and clone missing
replicas to restore the desired replication level, providing self-healing capabilities.12

FE-BE Interaction

The FE and BE nodes maintain continuous communication to ensure smooth cluster operation:

●​ BEs send regular heartbeat signals to the FE, which contain information about node
health, disk usage, and tablet status.18

●​ The FE dispatches query plan fragments to the appropriate BEs based on data locality
information stored in its metadata.9

●​ BEs report the status of their tasks (e.g., query execution, data loading, compaction)
back to the FE, which updates the global state accordingly.19

●​ Cluster topology changes, such as adding a new BE node via the ADD BACKEND
command, are managed by the FE, which then orchestrates the process of data
rebalancing to utilize the new resources.18

2.2 Architectural Evolution: From Coupled to Decoupled

Doris was initially conceived with a classic compute-storage coupled architecture but has
since evolved to embrace a more flexible, cloud-native decoupled model. This evolution
reflects a strategic response to the changing demands of modern data platforms, particularly
the need for elasticity and cost optimization.

The Classic Coupled Architecture (Shared-Nothing)

The traditional deployment model for Doris is a Shared-Nothing architecture where compute
and storage are tightly co-located on the same BE nodes.6 This design is a hallmark of many
high-performance MPP databases.

●​ Design: Each BE node manages its own local disks and processes queries on the data it
stores. This maximizes data locality, as computations can often be performed without
transferring data over the network, which is a primary source of latency in distributed
systems.6

●​ Trade-offs: This model offers excellent performance and is relatively simple to deploy as
it has no external system dependencies.6 However, it presents a significant challenge:
compute and storage resources are scaled together. If a workload requires more
computational power but not more storage (or vice versa), one set of resources is
inevitably over-provisioned, leading to inefficiency and higher costs.

The Modern Decoupled Architecture

To address the limitations of the coupled model, Doris introduced a compute-storage
decoupled architecture, which is particularly well-suited for cloud environments.6 This model
fundamentally restructures the system into three distinct tiers.7

●​ Three-Tier Structure:
1.​ Shared Storage Layer: Instead of being stored on local BE disks, the primary data

files (segments and indexes) are persisted in a centralized, shared storage system
like a cloud object store (e.g., Amazon S3) or HDFS.6 These systems offer low-cost,
highly durable storage, and their management is offloaded from Doris, simplifying
operations.7

2.​ Stateless Compute Layer: In this model, BE nodes become stateless compute
resources. They do not store primary data permanently. To mitigate the performance
penalty of accessing remote data, BEs use their local disks as a high-speed cache
for frequently accessed data blocks.6 This allows hot data to be served with
performance close to that of the coupled model, while cold data resides in cheaper
object storage. These stateless BEs can be organized into logical​
Compute Groups, allowing different workloads or teams to have their own
dedicated, elastically scalable compute resources while operating on the same
shared data.6

3.​ Meta Service: A new, stateless service is introduced to manage metadata in the
decoupled mode. It handles critical functions like data import transaction processing
and tablet metadata management, and it can be scaled horizontally to meet
demand.6

Analysis of Architectural Trade-offs

The availability of both architectures allows users to choose the model that best fits their
specific needs. This choice is not merely a technical detail but a strategic decision that
impacts performance, cost, and operational flexibility. The move toward a decoupled
architecture represents a fundamental pivot in Doris's strategy, aiming to capture the benefits
of cloud-native design. This shift transforms the system's economic model. For instance, in
the coupled model, data compaction must run on all three replicas, consuming three times
the compute resources. In the decoupled model, with a single data replica in object storage,
compaction runs only once, drastically reducing computational waste and cost.20 This
positions Doris to compete effectively with leading cloud-native data warehouses by offering
the elasticity, multi-tenancy, and cost-efficiency that modern enterprises demand.

●​ Coupled Architecture: This model remains the optimal choice for performance-critical
applications where minimizing I/O latency is the absolute priority. Its self-contained
nature and reliance on data locality deliver the highest possible query speeds, making it
ideal for on-premise deployments or scenarios where predictable, low-latency
performance outweighs the benefits of elastic scaling.6

●​ Decoupled Architecture: This model is the clear choice for cloud-native deployments
and workloads with variable demand. It provides unparalleled elasticity, allowing
compute resources to be scaled up or down independently of storage to match workload
needs, thereby optimizing costs. It enables true workload isolation by allowing different
teams to use separate Compute Groups on a shared data lake, preventing resource
contention. Finally, it dramatically lowers storage costs by leveraging inexpensive object
storage for the bulk of the data.6

Section 3: The Storage Engine: Physical and Logical
Data Organization

The performance of any analytical database is fundamentally tied to how it stores and
organizes data on disk. Apache Doris employs a highly optimized storage engine centered
around a columnar format, complemented by sophisticated logical data models and
distribution strategies. This multi-layered approach is designed to minimize I/O, maximize data
compression, and enable massive parallelism during query execution.

3.1 Columnar Storage and Its Optimizations

The cornerstone of the Doris storage engine is its columnar storage format. Unlike traditional
row-oriented databases that store all fields of a row contiguously, a columnar database stores
all values for a single column together.2

●​ Core Principle: This design is exceptionally well-suited for Online Analytical Processing
(OLAP) workloads. Analytical queries typically aggregate or filter data based on a small
subset of columns across millions or billions of rows. With columnar storage, the query
engine only needs to read the data for the columns referenced in the query, dramatically
reducing the amount of data read from disk compared to a row-oriented system that
would have to read entire rows.13

●​ Segment v2 File Format: Data on disk is physically organized into files called Segments.
The "Segment v2" format is the modern structure used by Doris, which is meticulously
designed for performance. Each Segment file is composed of three main parts 23:
1.​ Data Region: This section contains the actual column data. The data for each

column is stored separately and is further divided into smaller blocks called Pages
(typically 64 KB). This paged structure allows for fine-grained data access and
caching.23

2.​ Index Region: To avoid loading data unnecessarily, all index structures (such as
Ordinal, ZoneMap, and Bloom Filter indexes) are stored together in a separate region.
This allows the query engine to load and consult the indexes for an entire column
without touching the data pages themselves, enabling efficient data pruning.23

3.​ Footer: The end of the file contains a footer with critical metadata about the
segment. This includes schema information for each column, pointers to the location
of each column's data and index pages, and a short key index for rapid seeking.23

●​ Encoding and Compression: The homogeneity of data within a column makes it highly
compressible. Doris applies various encoding and compression techniques tailored to the
data type to reduce storage footprint and accelerate I/O. For example, it may use
BIT_SHUFFLE for numeric types, Dictionary (DICT) encoding for low-cardinality strings,
and Run-Length Encoding (RLE) for boolean values. These encodings not only save
space but can also accelerate computations directly on the encoded data.22

●​ Hybrid Row-Columnar Storage: While pure columnar storage excels at analytical scans,
it introduces a significant performance penalty for point queries that retrieve an entire
row (e.g., SELECT * FROM table WHERE primary_key = 'some_id'). In a wide table with
hundreds of columns, such a query would require hundreds of separate disk I/Os,
creating an I/O bottleneck.8 To address this, Doris offers an optional hybrid row-columnar
storage model. When a user enables the​
"store_row_column" = "true" property on a table, Doris creates an additional, hidden

column. This special column stores a binary-concatenated version of all the other
columns in the row.8 When a point query is executed, the engine can retrieve the entire
row's data with a single read from this row-store column, drastically improving
performance for high-concurrency lookup scenarios.26 This feature represents a
pragmatic compromise, positioning Doris for workloads that blur the line between pure
OLAP and Hybrid Transactional/Analytical Processing (HTAP). It acknowledges that many
real-world applications, such as user-facing dashboards, require both fast aggregations
and rapid retrieval of individual records. This flexibility comes at the cost of increased
storage consumption, a trade-off that allows architects to optimize for a wider range of
query patterns.12

3.2 Logical Data Models: Tailoring Storage to Workloads

Beyond the physical layout, Doris requires users to define a logical data model at the time of
table creation. This choice is immutable and fundamentally dictates how data is handled
during ingestion and storage, effectively acting as a "schema-on-write" optimization
strategy.27 This approach forces upfront design decisions to maximize query-time
performance, contrasting with schema-on-read systems that offer more flexibility but often at
the cost of slower query execution. Doris provides three distinct models 27:

●​ Duplicate Key Model: This is the simplest model, storing all ingested rows exactly as
they are, without any uniqueness or aggregation constraints.27 It is ideal for storing raw,
immutable fact data, such as logs or event streams. This model offers the highest
ingestion throughput and maximum flexibility for ad-hoc queries across any combination
of dimensions, as it is not constrained by a pre-defined aggregation logic.13

●​ Aggregate Key Model: This model is designed for reporting and dashboarding scenarios
with fixed query patterns. During data ingestion, rows that share the same key columns
are automatically aggregated. The non-key "value" columns are combined using a
specified aggregation function (e.g., SUM, MIN, MAX, REPLACE). This pre-aggregation
dramatically reduces the amount of data stored on disk and significantly accelerates
queries that align with the aggregation definition.27

●​ Unique Key Model: This model enforces the uniqueness of the key columns, effectively
implementing an "upsert" (update or insert) semantic. When new data arrives with a key
that already exists, the old row is replaced with the new one. This model is essential for
use cases that require synchronizing data from transactional systems (e.g., via Change
Data Capture) or any scenario involving frequent updates to existing records.27 To
improve update performance, Doris offers a high-performance Merge-on-Write
implementation for this model.28

3.3 Data Distribution: Partitioning and Bucketing

To manage massive datasets and enable parallel processing, Doris employs a two-level data
distribution strategy: partitioning and bucketing.29

●​ Two-Layer Sharding: A table's data is first logically divided into Partitions. Each
partition is then further physically divided into Buckets. This two-tiered approach
provides a powerful and flexible way to manage and query data.31

●​ Partitioning:
○​ Purpose: Partitioning is primarily used for data lifecycle management and query

performance optimization through partition pruning. By dividing a table into smaller
logical chunks based on a partition key, operations like deleting old data become
trivial (simply drop a partition), and queries with filters on the partition key can skip
reading irrelevant partitions entirely.30

○​ Types and Management: Doris supports Range Partitioning, which is most
common for time-series data (e.g., partitioning by day or month on a DATETIME
column), and List Partitioning, for partitioning on discrete values (e.g., country code
or city name).30 Partitions can be created manually, or their creation and deletion can
be automated using the​
Dynamic Partitioning feature, which is ideal for managing rolling time windows of
data.30

●​ Bucketing:
○​ Purpose: While partitioning provides logical data management, bucketing is about

physical data distribution. Its goal is to evenly distribute the data within a partition
across all BE nodes in the cluster to enable balanced, parallel query execution.30 It is
also the key mechanism that enables advanced query optimizations like Colocate
Join.

○​ Methods: The primary method is Hash Bucketing, where data is assigned to a
bucket based on the hash value of one or more specified bucket key columns.34 For
cases where a suitable, evenly distributed hash key is not available,​
Random Bucketing can be used to prevent data skew by distributing rows
randomly.34

○​ Tablet: The fundamental unit of physical storage, replication, and balancing in Doris
is the Tablet. A tablet is simply a bucket of data within a specific partition.30 For high
availability, each tablet has multiple replicas stored on different BE nodes. The total
number of tablets in a table is the number of partitions multiplied by the number of
buckets per partition.31

The following table provides a clear, at-a-glance reference for architects to choose the

correct data model based on their specific use case requirements for data updates, query
patterns, and performance.

Table 3.1: Comparison of Doris Data Models

Feature Duplicate Key
Model

Aggregate Key
Model

Unique Key Model

Primary Use Case Storing raw,
detailed fact data
(e.g., logs, events)
for ad-hoc analysis.

Pre-aggregated
reporting and
dashboards with
fixed query
patterns (e.g.,
calculating daily
SUMs, MINs,
MAXs).

Scenarios requiring
real-time data
updates or
synchronization
with transactional
systems (upserts).

Key Uniqueness Not enforced.
Duplicate key rows
are allowed and
stored.

Enforced. Keys are
unique within the
aggregated result.

Enforced. Keys are
unique, ensuring
only one row per
primary key.

Data Ingestion
Behavior

All incoming rows
are appended
as-is. Highest
ingestion
performance.

Rows with the same
key are aggregated
based on a defined
function (SUM,
REPLACE, etc.)
during ingestion.

New rows with an
existing key
overwrite (update)
the old row.

Update/Delete
Support

No support for
UPDATE or DELETE
statements.

No support for
UPDATE or DELETE.
Partial column
updates possible
via
REPLACE_IF_NOT_
NULL aggregation.

Full support for
UPDATE and
DELETE
statements.
Supports partial
column updates.

Query
Performance

Excellent for
ad-hoc queries
across any
dimension. No

Extremely fast for
queries that match
the
pre-aggregation.

Good for point
queries and
updates. Cannot
leverage

pre-aggregation
benefits.

Less flexible for
other query
patterns.

pre-aggregation
benefits for
analytical queries.

Section 4: Query Lifecycle: From SQL to Results

The journey of a query in Apache Doris is a sophisticated, multi-stage process designed to
transform a declarative SQL statement into a highly optimized, parallelized execution plan.
This process is orchestrated by the Frontend (FE) node and executed by the Backend (BE)
nodes, leveraging an advanced query optimizer and a modern execution engine to achieve
high performance.

4.1 The Query Optimizer: Crafting the Optimal Plan

The query optimizer is the intelligent core of the FE, responsible for finding the most efficient
way to execute a given query. It employs a combination of rule-based and cost-based
techniques to explore a vast search space of possible execution plans and select the best
one.10

●​ Multi-Stage Process: The optimization pipeline begins after a client sends an SQL string
to the FE.
1.​ Syntax and Semantic Analysis: The SQL text is first parsed into an Abstract Syntax

Tree (AST). The analyzer then validates this tree, checking for the existence of tables
and columns, verifying data types, and resolving function calls. If any errors are
found, the query is rejected.10

2.​ Rule-Based Optimization (RBO): The valid AST is transformed into an initial logical
query plan. The RBO phase then applies a series of deterministic, heuristic-based
rules to rewrite this plan into a more efficient form. Key transformations include:
■​ Predicate Pushdown: Moving WHERE clause filters as close to the data source

as possible to reduce the volume of data processed in later stages.2

■​ Partition Pruning: Eliminating entire data partitions from the scan if they cannot
possibly contain data that satisfies the query's filters.

■​ Constant Folding: Evaluating constant expressions (e.g., 1 + 1) at planning time
rather than execution time.

■​ Subquery Rewriting: Transforming complex subqueries into more efficient join

operations.10

3.​ Cost-Based Optimization (CBO): Following RBO, the CBO takes over to handle
more complex decisions, particularly the optimal join order for multi-table queries.
Doris's CBO is based on the advanced Cascades optimization framework.10 It
systematically explores various equivalent logical plans (e.g., joining tables A and B
first, then C, versus joining B and C first, then A). For each potential plan, it uses
stored statistics about the data (such as table cardinality and column value
distribution) to estimate its execution "cost" in terms of CPU, I/O, and network
resources. The plan with the lowest estimated cost is ultimately chosen for
execution.2

●​ Adaptive Query Execution with Runtime Filters: Doris's optimization does not stop at
the planning phase; it continues dynamically during query execution. The most powerful
adaptive technique is the Runtime Filter. When executing a hash join, the build side
(typically the smaller table) constructs a filter based on the actual join key values it
processes. This filter, which can be a Min/Max range, an IN predicate, or a Bloom Filter, is
then sent to the BE nodes that are scanning the probe side (the larger table). The scan
operator on the probe side applies this filter before reading data from disk, allowing it to
skip entire data blocks or pages that could not possibly match the join condition. This
technique can dramatically reduce I/O and network traffic, leading to significant
performance gains, especially in selective joins.1

4.2 The Execution Engine: From Volcano to Pipeline

The execution engine, residing on the BE nodes, is responsible for bringing the physical plan
to life. Doris has transitioned from a traditional execution model to a modern, highly parallel
one.

●​ Legacy Volcano Model: Early versions of Doris used the classic "Volcano" iterator
model. In this pull-based system, each operator in the plan tree has a next() method. To
get results, a parent operator calls next() on its child, which in turn calls next() on its own
child, and so on, pulling data up the tree one row or batch at a time. While simple to
implement, this model can suffer from inefficiencies, as a blocked operator (e.g., waiting
for network data) can stall an entire execution thread.9

●​ Modern Pipeline Execution Engine: To overcome the limitations of the Volcano model
and handle high concurrency effectively, Doris implemented a Pipeline execution engine.
This model is a direct and sophisticated solution to the classic MPP concurrency
bottleneck where assigning one thread per query fragment leads to a "thread explosion"
under high load, causing excessive context switching and overhead.1

○​ Core Concept: The execution plan is broken down into a series of pipelines. A
pipeline is a sequence of operators that can execute without blocking. Operators that

inherently block, such as the build phase of a hash join or a network exchange, act as
"pipeline breakers." They split the plan into multiple, dependent pipelines.9

○​ Benefits: Instead of dedicating a thread to each part of a query, the Pipeline engine
schedules executable pipeline tasks onto a fixed-size thread pool (usually sized to
the number of available CPU cores). When a task needs to block (e.g., to wait for I/O),
it yields its thread, which the scheduler can immediately assign to another ready
task. This non-blocking, task-based scheduling model prevents threads from being
held hostage by slow operations, dramatically improving overall CPU utilization and
system throughput under high concurrency.9

●​ Fully Vectorized Engine: Complementing the Pipeline model is a fully vectorized
execution engine.
○​ Core Concept: The engine processes data not row-by-row, but in batches (typically

of 1024 rows) called vectors or blocks. These blocks are laid out in a columnar format
in memory, mirroring the on-disk storage format.2

○​ Benefits: This approach yields massive performance improvements by:
1.​ Reducing Per-Row Overhead: The cost of function calls and control flow logic

is amortized over an entire batch of rows.
2.​ Improving CPU Cache Locality: Processing a single column's data sequentially

leads to better cache utilization.
3.​ Enabling SIMD: It allows the engine to leverage modern CPU's SIMD (Single

Instruction, Multiple Data) instructions, which can perform the same operation
(e.g., addition, comparison) on multiple data points simultaneously within a single
CPU cycle.​
This combination of optimizations results in a 5 to 10-fold performance increase
in CPU-bound analytical workloads like wide table aggregations.4

The synergy between the CBO, Runtime Filters, and the Vectorized Engine creates a
multi-layered performance strategy. The CBO provides static, global planning before
execution begins. The Vectorized Engine optimizes the micro-level execution of each
operation for maximum CPU efficiency. Finally, Runtime Filters add a dynamic, adaptive layer
that optimizes data flow between operators at runtime. This comprehensive approach makes
the query engine robust and performant across a wide variety of query patterns and data
distributions.

4.3 Distributed Execution Plan

The final step in the FE is to convert the optimized single-node plan into a distributed plan
that can be executed in parallel across the BE cluster.

●​ From Logical to Physical Plan: The optimizer inserts ExchangeNode operators into the

plan. These nodes represent data transfer (shuffling) points between BEs. For example, in
a hash join between two tables distributed across the cluster, an ExchangeNode is
needed to re-distribute the data from both tables to the BEs based on the hash of the
join key, ensuring that rows with the same key end up on the same node for joining.39

●​ Fragments: The physical plan is then partitioned into Fragments. A Fragment is a
self-contained sub-plan that can be executed on a single BE node without interruption.
The boundaries of fragments are typically the ExchangeNodes.9 The FE dispatches each
fragment to one or more BEs for execution.

●​ PipelineTasks: On a BE, each received Fragment is further compiled into a set of logical
Pipelines. Each logical Pipeline is then instantiated into multiple parallel PipelineTasks,
which are the actual units of work scheduled onto the engine's thread pool. This allows
for both inter-node parallelism (multiple BEs working on different fragments) and
intra-node parallelism (multiple threads on one BE working on different PipelineTasks).39

●​ Local Shuffle: To prevent data skew within a single BE node, where one PipelineTask
might receive significantly more data than others, the planner can insert a Local Shuffle
operator. This operator acts as a pipeline breaker that re-distributes the data from an
upstream pipeline evenly among all the tasks of a downstream pipeline, ensuring
balanced execution and maximizing intra-node parallelism.9

Section 5: Data Management and System Operations

Effective data management is crucial for the performance and reliability of a data warehouse.
Apache Doris provides a robust set of tools and automated processes for data ingestion,
storage maintenance, and ensuring data consistency and concurrency. These internal
operations are designed to support the demands of real-time analytics, from high-frequency
data streams to large-scale batch updates.

5.1 Data Ingestion Mechanisms

Doris's role as a centralized analytical hub is reflected in its diverse and flexible data ingestion
capabilities. It supports a comprehensive suite of methods catering to different data sources,
volumes, and latency requirements, allowing it to integrate seamlessly into virtually any data
architecture.29

●​ Stream Load: This is a synchronous, push-based method where data is sent to a BE
node via an HTTP request. The client application reads the data (e.g., from a local file or a

data stream) and pushes it directly to Doris. The HTTP response immediately indicates
the success or failure of the load job, making it suitable for scenarios that require
real-time feedback and low-latency ingestion.12

●​ Broker Load: This is an asynchronous, pull-based method designed for large-scale
batch loading from remote storage systems like HDFS or cloud object stores (S3, GCS,
etc.).29 The user submits a​
LOAD command to the FE, which then orchestrates the import. The BE nodes pull the
data directly from the remote source in parallel. This method is ideal for offline ETL jobs
and initial data migrations, as it offloads the data transfer work from the client to the
Doris cluster itself.46

●​ Routine Load: This method provides continuous, managed data ingestion from Apache
Kafka. A user creates a persistent ROUTINE LOAD job on the FE, specifying the Kafka
topic and connection details. The FE then automatically and continuously creates small,
transactional micro-batch tasks to consume messages from Kafka and load them into
Doris. This approach is designed for robust, real-time streaming pipelines and supports
Exactly-Once semantics to prevent data loss or duplication.12

●​ Insert Into: Doris supports the standard SQL INSERT INTO statement, which serves two
primary purposes. INSERT INTO... VALUES is a synchronous command suitable for
inserting small amounts of data for testing or ad-hoc purposes. More powerfully, INSERT
INTO... SELECT acts as an internal ETL tool, allowing users to load data into a Doris table
from the result of any valid SELECT query. This can be used to transform and move data
between Doris tables or to ingest data from external tables defined via the Multi-Catalog
feature.12

●​ Spark Load: For extremely large datasets that require significant preprocessing before
ingestion, Doris offers Spark Load. This method leverages an external Apache Spark
cluster to perform complex transformations, sorting, and pre-aggregation on the source
data. The processed data is then efficiently loaded into Doris. This offloads the
resource-intensive ETL work from the BEs, preserving their resources for query
execution.12

5.2 Data Compaction and Maintenance

Doris employs a storage architecture with characteristics similar to a Log-Structured
Merge-Tree (LSM-Tree). When data is written, it creates new, immutable segment files on disk.
This append-only approach is highly efficient for writes, but over time it can lead to a
proliferation of small files, which would degrade read performance. Compaction is the critical
background process that mitigates this issue.11

●​ Purpose of Compaction: The primary goal of compaction is to periodically merge

smaller segment files into larger, more optimally structured ones. This process improves
query performance by reducing the number of files that need to be opened and scanned.
Critically, compaction is also the mechanism by which data updates and deletions (in the
Unique Key model) are physically applied to the data files.16

●​ Compaction Strategies: Doris has evolved its compaction algorithms to be more
efficient and less resource-intensive.
○​ Cumulative and Base Compaction: The system distinguishes between two main

types of compaction. Cumulative Compaction focuses on merging newly ingested,
smaller, and more numerous rowsets quickly. Base Compaction is a heavier process
that merges larger, older rowsets to create the final, optimized base version of the
data.51

○​ Vertical Compaction: For wide tables (tables with many columns), traditional
compaction can be extremely memory-intensive as it needs to load all columns for
the rows being merged. Vertical Compaction is an optimized algorithm that
processes columns in smaller, independent groups. This dramatically reduces the
peak memory usage (by up to 90%) and increases the speed of compaction, making
updates and maintenance on wide tables far more efficient and stable.16

○​ Segment Compaction: To prevent load jobs from failing with a "too many segments"
error due to high-frequency writes or low-cardinality data, this feature can merge
small segment files as they are being generated during the load process itself. This
ensures that the base data remains healthy and improves the performance of
subsequent queries on the newly loaded data.16

○​ Single Replica Compaction: In a standard multi-replica setup, each replica would
independently perform compaction, consuming CPU and I/O resources on each
node. To optimize this, the Single Replica Compaction strategy designates one
replica to perform the compaction work. Once complete, the other replicas simply
download the already compacted files. This approach saves N-1 times the
computational resources, where N is the number of replicas, significantly reducing
the background load on the cluster.16

5.3 Concurrency, Consistency, and Transactions

Doris provides strong guarantees around data consistency and manages concurrent
operations to ensure system stability and predictable behavior.

●​ Transactionality and Atomicity: Every data import job in Doris, regardless of the
method used, is treated as a single atomic transaction. This ensures that all data within a
given load batch is either successfully committed and made visible, or the entire batch is
rolled back in case of failure. There is no risk of partial data writes.52

●​ Multi-Version Concurrency Control (MVCC): Doris uses an MVCC mechanism to

handle concurrent reads and writes. Each committed transaction is assigned a unique,
monotonically increasing version number. When a query is executed, it is given a specific
version number to read. This allows the query to see a consistent snapshot of the data as
of that version, without being affected by concurrent write operations. Similarly, writers
do not block readers, enabling high concurrency for mixed workloads.54

●​ Consistency Model:
○​ Write Consistency: For data durability, Doris relies on a multi-replica architecture.

By default, it employs a majority write (quorum) strategy. For a table with three
replicas, a write transaction is considered successful and is committed only after at
least two of the three replicas have successfully written the data. The remaining
replica is then updated asynchronously in the background. This model provides a
robust balance between data reliability and write latency.13

○​ Data Updates: In the Unique Key model, MVCC versioning is used to resolve update
conflicts. When multiple updates for the same primary key occur, the data from the
transaction with the highest version number prevails. To handle cases where data
may arrive out of order from parallel sources, users can define a sequence column in
their table. Doris will then use the value in this column as a tie-breaker to determine
the correct update order, ensuring that older data does not overwrite newer data.12

●​ Concurrency Control: Doris provides mechanisms to manage both query and write
concurrency to prevent system overload.
○​ Query Concurrency: This is managed through Workload Groups. Administrators

can define groups with specific limits on max_concurrency (the number of queries
running at once), max_queue_size (how many queries can wait), and queue_timeout.
When the concurrency limit is reached, new queries are queued or rejected, ensuring
the system remains stable under heavy load.55

○​ Write Concurrency: High-frequency, small-batch writes (e.g., from streaming
sources) can create significant overhead for the FE, which has to manage a
transaction for each write. The Group Commit mechanism addresses this by
batching multiple small, independent write requests on the server-side into a single,
larger transaction. This dramatically reduces the load on the FE and limits the rapid
proliferation of small file versions on the BEs, improving overall system throughput
and stability.56 The combination of advanced compaction algorithms and Group
Commit is what makes real-time, high-frequency updates a viable and performant
feature in Doris, distinguishing it from more traditional, append-only OLAP systems.

The following table provides a clear framework for users to select the appropriate data
loading method by outlining the characteristics, use cases, and operational model of each.

Table 5.1: Comparison of Primary Data Ingestion Methods

Feature Stream Load Broker Load Routine Load Insert Into

Mechanism Push-based
(Client pushes
data to BE)

Pull-based (BE
pulls data from
remote source)

Pull-based (FE
manages
continuous pull
from Kafka)

SQL-based
(Executed
within the
Doris cluster)

Synchronicity Synchronous
(Immediate
success/fail
response)

Asynchronous
(Job status
checked via
SHOW LOAD)

Asynchronous
(Persistent job,
status checked
via SHOW
ROUTINE
LOAD)

Synchronous
(Immediate
success/fail
response)

Typical Data
Source

Local files,
application
data streams
via HTTP

HDFS, S3, and
other object
stores

Apache Kafka
topics

Other Doris
tables, results
of a SELECT
query, or literal
VALUES

Recommende
d Data
Volume

Small to
medium
batches (MBs
to a few GBs)
per request

Large batches
(tens to
hundreds of
GBs) per job

Continuous
micro-batches
(KBs to MBs)

Small for
VALUES,
variable for
SELECT
(depends on
query result
size)

Key Use Case Real-time
streaming
ingestion from
applications;
loading local
files.

Large-scale,
offline batch
ETL from data
lakes or object
storage.

Building
robust,
continuous,
real-time
streaming
pipelines from
Kafka.

Internal data
transformation
(ETL); loading
from external
tables; small
ad-hoc inserts.

Section 6: Performance Acceleration and Advanced
Features

Beyond its core architecture, Apache Doris incorporates a suite of advanced features
designed specifically to accelerate query performance and reduce computational overhead.
These mechanisms, including materialized views, a multi-layered indexing strategy, and
intelligent caching, work in concert to deliver the sub-second response times required for
modern analytical applications.

6.1 Materialized Views: Pre-computation for Speed

A materialized view (MV) is a powerful optimization technique that pre-computes and stores
the result set of a query, allowing subsequent queries to access the pre-calculated data
instead of re-computing it from the base tables. This trade of storage space for query speed
is a cornerstone of performance tuning in data warehousing.58

●​ Core Concept: When a user submits a query, the Doris optimizer can automatically and
transparently rewrite it to use a suitable materialized view, even if the query references
the base tables directly. This process is seamless to the end-user, who continues to
query the original tables but experiences significantly faster response times.2 Doris
supports two distinct types of materialized views, each representing a different trade-off
between data freshness and computational complexity.

●​ Synchronous Materialized Views:
○​ Mechanism: Also known historically as a Rollup, a synchronous MV is updated in

real-time, within the same transaction as the base table. When new data is loaded,
the corresponding aggregations in the MV are calculated and committed
simultaneously with the base table data. This ensures strong consistency between
the MV and its source.59

○​ Limitations: This real-time consistency comes with constraints. Synchronous MVs
can only be defined on a single table and cannot contain complex operations like
joins. They are essentially pre-aggregated summaries of a single table. Furthermore,
because they add computational overhead to every write operation, having too many
synchronous MVs on a single table can slow down data ingestion performance.58

●​ Asynchronous Materialized Views:
○​ Mechanism: Asynchronous MVs decouple the refresh process from the data

ingestion pipeline. They are updated based on a defined schedule (e.g., every hour),
a manual trigger, or upon a commit to the base table. This results in eventual
consistency, where the data in the MV may lag slightly behind the base table.61

○​ Capabilities: The flexibility gained from decoupling is immense. Asynchronous MVs
are far more powerful, supporting definitions that include multi-table joins, complex
expressions, and even queries on external data sources in a Lakehouse architecture.

They can also be queried directly as if they were regular tables, making them useful
for creating intermediate data marts or summary tables in an ETL workflow.59

The existence of these two MV types is a deliberate design choice, offering architects a clear
trade-off. Synchronous MVs are ideal for real-time dashboards and reporting on a single fact
table where data freshness is paramount. Asynchronous MVs are better suited for building
complex, cross-domain data marts or accelerating heavy analytical queries where a small
amount of data latency is acceptable in exchange for the ability to pre-compute complex joins
and transformations.

6.2 Multi-Layered Indexing Strategy

Doris employs a hierarchical indexing strategy that combines several types of indexes to
prune data at different granularities, from entire files down to individual data blocks. This
"defense-in-depth" approach to I/O reduction is critical for achieving fast query performance
by minimizing the amount of data that must be read from disk.63

●​ Built-in Indexes (Smart Indexes): These indexes are created and maintained
automatically by Doris without user intervention.
○​ Sorted Compound Key (Prefix) Index: When a table is created, its data is physically

sorted on disk according to the specified key columns (Duplicate, Unique, or
Aggregate Key). Doris automatically creates a sparse index on the first 36 bytes of
this sort key. This index stores an entry for every 1024 rows, pointing to the start of
that data block. When a query includes a filter on the prefix of the sort key, this index
allows the scanner to quickly seek to the relevant data blocks, bypassing the vast
majority of the table's data.1

○​ ZoneMap Index: Doris automatically creates a ZoneMap index for every column in
every segment file. This index stores metadata for each data page, including the
minimum and maximum values. When a query contains a predicate (e.g., WHERE
sales > 500 AND sales < 1000), the engine first consults the ZoneMap. If the query's
range does not overlap with a page's min/max range, that entire page can be skipped
without being read from disk. This provides coarse-grained but effective data
pruning for all columns.23

●​ User-Created Secondary Indexes: For more targeted performance optimization, users
can create secondary indexes on specific columns.
○​ Inverted Index: This index creates a mapping from a value (or a token, in the case of

text) to the list of row IDs that contain it. It is exceptionally powerful for accelerating
full-text search queries (using MATCH) and high-selectivity equality or range filters
on high-cardinality columns. It essentially allows for direct lookups of qualifying rows,
avoiding a full table scan.1

○​ Bloom Filter Index: A Bloom filter is a space-efficient, probabilistic data structure
that can quickly determine if an element is definitely not in a set. Doris can create a
Bloom filter for each data block on a specified column. When an equality query (= or
IN) is executed, the engine checks the Bloom filter first. If the filter indicates the
value is not present in the block, the block is skipped. This is highly effective for
filtering on high-cardinality columns like user_id or order_id.1

○​ Bitmap Index: Best suited for columns with low to medium cardinality (e.g., gender,
country, city), a bitmap index creates a separate bitmap for each distinct value in the
column. These bitmaps can be combined with extremely fast bitwise operations
(AND, OR) to resolve complex, multi-column predicates efficiently.66

6.3 Caching Mechanisms

To reduce latency, especially when accessing remote data or re-executing common queries,
Doris implements several layers of caching.

●​ Metadata Cache: In a Data Lakehouse setup, repeatedly fetching metadata (schemas,
partitions, file locations) from external sources like a Hive Metastore can be a significant
performance bottleneck. Doris maintains a cache of this external metadata within the FE,
with configurable expiration and refresh policies. This allows for millisecond-level
metadata access for subsequent queries.12

●​ Data Cache (Block Cache): This cache is essential for the compute-storage decoupled
architecture. When a BE node reads a data block from a remote object store, it can cache
that block on its fast local SSD. Subsequent queries that need the same data block can
then read it from the local cache, avoiding the high latency of a network round trip to the
remote storage. This mechanism effectively keeps "hot" data close to the compute
resources.12

●​ Query Cache (SQL Cache): Doris can cache the final result set of queries. If an identical
SQL query is submitted again and the underlying data in the queried tables has not
changed, Doris can serve the result directly from the cache, bypassing query planning
and execution entirely. This provides the fastest possible response time for frequently
executed, deterministic queries, such as those powering popular dashboard widgets.69

The following table helps developers and DBAs understand which index to use for a given
query pattern and data characteristic.

Table 6.1: Overview of Indexing Mechanisms in Apache Doris

Index Type Category Primary Supported Supported Key

Use Case Data
Cardinality

Query
Operators

Trade-off

Sorted
Compound
Key

Built-in Acceleratin
g range
scans and
equality
lookups on
the prefix
of the sort
key.

All =, IN, >, <,
BETWEEN
on key
prefix

Only one
per table;
effectivene
ss depends
on query
aligning
with the
sort order.

ZoneMap
Index

Built-in Coarse-grai
ned data
skipping for
all columns
based on
min/max
values.

All =, IN, >, <,
BETWEEN,
IS NULL

Less
effective for
non-selecti
ve queries
or columns
with wide
value
ranges.

Inverted
Index

Secondary Full-text
search and
fast
point/range
queries on
any column.

High MATCH, =,
IN, >, <,
array_conta
ins

Higher
storage
overhead
and
ingestion
cost.

Bloom
Filter Index

Secondary Acceleratin
g equality
lookups on
high-cardin
ality
columns
(e.g., IDs).

High =, IN Probabilisti
c (small
chance of
false
positives);
not useful
for range
queries.

Bitmap
Index

Secondary Acceleratin
g queries
with
multiple

Low to
Medium

=, IN Inefficient
for
high-cardin
ality

AND/OR
conditions
on
low-cardina
lity
columns.

columns
due to large
bitmap size.

Section 7: Comparative Architectural Analysis

To fully appreciate the internal design of Apache Doris, it is instructive to compare it with
other prominent systems in the analytical database landscape. This analysis focuses on
architectural philosophies and key design trade-offs against ClickHouse, StarRocks, and Trino,
revealing how Doris positions itself in the market.

7.1 Doris vs. ClickHouse

The comparison between Doris and ClickHouse highlights a fundamental difference in design
philosophy: managed usability versus raw, specialized performance.

●​ Architecture: Doris is built around a managed cluster architecture with its FE/BE model.
The FE provides a centralized point of control, automating tasks like data balancing,
replica repair, and cluster expansion, which simplifies operations significantly.71
ClickHouse, while capable of running in a cluster, has a design more akin to a collection
of powerful single nodes. Setting up a distributed ClickHouse cluster requires manual
configuration of distributed tables and relies on an external coordination service like
ZooKeeper or ClickHouse Keeper, placing a higher operational burden on the user.71

●​ Data Updates: This is a key differentiator. Doris, with its Unique Key model, provides
strongly consistent, synchronous update and delete operations. When an UPDATE
command completes, the data is immediately consistent and visible to subsequent
queries. This is critical for real-time analytics scenarios that require synchronization with
transactional data.72 ClickHouse's update and delete operations (via​
ALTER TABLE... UPDATE/DELETE) are asynchronous mutations. The operation is queued
and executed in the background, meaning there can be a delay before the changes are
reflected in query results, leading to temporary data inconsistencies.71

●​ Joins and SQL Compatibility: Doris was designed from the ground up as an MPP

system with a sophisticated CBO capable of handling complex, large-scale multi-table
joins, including distributed shuffle joins between large tables.71 ClickHouse is renowned
for its world-class performance on single-table scans and queries on denormalized
(wide) tables but has historically been less optimized for the kind of complex, ad-hoc
joins common in BI tools.73 Furthermore, Doris prioritizes compatibility with the MySQL
protocol and standard ANSI SQL, which lowers the learning curve and simplifies
integration with the existing data ecosystem. ClickHouse uses its own powerful but
distinct SQL dialect, which may require users to adapt their queries and tools.71

7.2 Doris vs. StarRocks

Doris and StarRocks share a common ancestry, as StarRocks was forked from an early version
of Apache Doris in 2020.74 While they retain a similar foundational FE/BE architecture, both
projects have undergone extensive, independent development and have diverged significantly
in their focus and implementation.

●​ Origins and Divergence: Since the fork, both codebases have been heavily rewritten.74
This shared heritage means they have similar concepts (e.g., data models, load methods),
but the underlying implementation of core components like the query optimizer and
execution engine has evolved separately.

●​ Strategic Focus: The two projects appear to be pursuing different strategic priorities.
StarRocks has heavily marketed its capabilities as a high-performance query engine for
data lakes, positioning itself as a direct competitor to and replacement for engines like
Trino.74 While Apache Doris also possesses strong data lake query capabilities, its
development roadmap has maintained a broader focus on being a​
unified OLAP database. This includes significant investment in features that enhance its
role as a standalone data warehouse, such as advanced support for semi-structured
data (JSON, VARIANT types), optimizations for high-concurrency point queries, and
robust real-time data update mechanisms.74

●​ Performance and Community: Both systems are highly performant, leveraging
vectorized execution engines and cost-based optimizers. Publicly available benchmarks
are often contentious and workload-dependent, with each project claiming performance
leadership in different scenarios.74 The choice between them often comes down to
specific feature maturity, community support, and alignment with an organization's
primary use case (e.g., pure lakehouse query vs. a unified data warehouse).

7.3 Doris vs. Trino (Presto)

The comparison with Trino highlights the difference between a unified data warehouse and a
federated query engine.

●​ Architecture: This is the most fundamental distinction. Doris is an integrated system that
combines both a storage engine and a query execution engine. It manages its own data
in an optimized columnar format.69 Trino, in contrast, is a pure​
federated query engine. It does not have its own storage layer. Its purpose is to execute
queries on data where it currently resides, whether in a data lake (Hive, Iceberg, Hudi), a
NoSQL database (Cassandra), or a relational database (MySQL, PostgreSQL).69

●​ Performance:
○​ On External Data: When both are used as query engines on top of a data lake, Doris

often demonstrates superior performance. This is attributed to its C++
implementation (versus Trino's Java), which allows for more direct memory
management and CPU optimization, as well as more advanced caching mechanisms
for both data and metadata, and the ability to use materialized views to accelerate
queries on external tables.69

○​ On Native Data: When data is ingested into Doris's own optimized storage format,
the performance advantage becomes even more pronounced (often cited as 3-10x
faster). This is because Doris can leverage its full suite of internal
optimizations—columnar storage with compression, multi-layered indexing, data
locality in the coupled model, and colocation strategies—which are not available to a
storage-agnostic engine like Trino.69

●​ Use Case and Philosophy: Trino's strength lies in its ability to provide a single SQL
interface for ad-hoc, exploratory queries across a vast and heterogeneous data
landscape without requiring data movement. Doris offers a more unified solution. It can
perform federated queries like Trino, but it also provides a high-performance native
storage layer. This allows organizations to simplify their data architecture by using a
single system for both data warehousing and data lake querying, eliminating the
complexity and cost of maintaining separate storage and query engine layers.69

Ultimately, the competitive landscape reveals a clear "middle path" strategy for Doris. It does
not aim to be the absolute fastest single-table engine, a title often claimed by ClickHouse, nor
is it a pure, storage-agnostic query engine like Trino. Instead, Doris occupies a strategic
middle ground, offering a balanced and unified platform. It provides better multi-table join
performance, stronger data consistency, and simpler cluster management than ClickHouse,
making it more suitable for general-purpose BI and enterprise analytics. Simultaneously, it
delivers a more performant and integrated solution than Trino by tightly coupling storage and
compute, providing a "one-stop shop" for a wide range of analytical needs.

The following table provides a high-level strategic comparison for architects choosing a
system based on core design principles rather than just feature lists.

Table 7.1: Architectural Design Trade-offs: Doris vs. ClickHouse vs. Trino

Architectural
Aspect

Apache Doris ClickHouse Trino (Presto)

Core Paradigm Unified Data
Warehouse:
Integrates storage
and compute for a
comprehensive
OLAP solution.

High-Performance
Columnar
Database:
Optimized for
extreme speed on
single-table
analytical queries.

Federated Query
Engine: Decouples
query execution
from storage,
querying data
in-place.

Storage Model Native, optimized
columnar storage.
Also supports
querying external
data lakes (Hive,
Iceberg).

Native, highly
optimized columnar
storage via
MergeTree engine
family.

None. Relies
entirely on external
storage systems via
connectors.

Data Update
Model

Synchronous &
Consistent: Unique
Key model provides
immediate, strongly
consistent
updates/deletes.

Asynchronous &
Eventual:
Mutations are
processed in the
background,
leading to eventual
consistency.

Read-Only (by
default): Update
capabilities depend
entirely on the
underlying storage
system's connector.

Cluster
Management

Managed &
Automated: FE
nodes handle
cluster
coordination,
auto-balancing,
and fault recovery.

Manual & Flexible:
Requires external
coordination (e.g.,
ZooKeeper) and
manual setup of
distributed tables.

Coordinator/Work
er Model: Simple
to scale workers,
but no built-in data
management or
balancing.

Primary Strength Balance and
Versatility: Strong
performance on
complex joins,
real-time updates,

Raw Speed:
Unmatched
performance on
large, denormalized
single-table scans

Federation and
Flexibility: Ability
to query anything,
anywhere with a
single SQL

and ease of use. and aggregations. interface.

Section 8: Conclusion and Future Outlook

The internal architecture of Apache Doris is a testament to a pragmatic and evolving design
philosophy, meticulously engineered to balance extreme performance with operational
simplicity and data consistency. This analysis has deconstructed the key components that
enable Doris to fulfill its role as a high-performance, real-time analytical data warehouse. The
synergy between its core architectural tenets—the straightforward two-process FE/BE model,
the flexible coupled and decoupled deployment options, a highly optimized columnar storage
engine, and a modern query execution pipeline—creates a system that is both powerful and
accessible.

The simplified FE/BE architecture significantly lowers the barrier to entry and reduces the
total cost of ownership, a deliberate choice that contrasts sharply with the complexity of many
distributed data systems. The evolution to include a compute-storage decoupled model is a
strategic pivot that aligns Doris with the demands of cloud-native environments, offering the
elasticity, workload isolation, and cost-efficiency required by modern enterprises. Internally,
the storage engine's columnar format, augmented by a hybrid row-store option and a
multi-layered indexing strategy, provides a versatile foundation for a wide spectrum of
analytical and point-query workloads. This physical storage is intelligently managed through
logical data models that allow architects to tailor data handling to specific business
requirements for updates, aggregation, or raw data retention.

At the heart of its performance lies the query processing pipeline. The journey from SQL to
result set is guided by a sophisticated, multi-stage optimizer that combines deterministic
rule-based transformations with advanced cost-based planning. The resulting plan is brought
to life by a state-of-the-art execution engine that leverages the CPU-level efficiency of
vectorization and the high-concurrency, resource-efficient scheduling of the Pipeline model.
This combination ensures that Doris can handle both high-throughput complex analysis and
high-concurrency point queries effectively.

Ultimately, the design of Apache Doris reflects a deep understanding of the practical needs of
enterprise data analytics. It prioritizes strong data consistency through transactional ingestion
and synchronous update models, offers a familiar MySQL-compatible interface to foster
broad ecosystem integration, and provides a unified platform that can simplify complex data
architectures by serving as both a data warehouse and a data lake query engine.

Looking ahead, the project's trajectory indicates a continued commitment to these core

principles. The ongoing development of the next-generation Nereids query optimizer
promises even smarter and more robust query planning.10 Further enhancements to its Data
Lakehouse capabilities, including deeper integration with formats like Apache Iceberg and
Apache Hudi and support for incremental materialized views on external data, will solidify its
position as a central hub for unified analytics.68 As Doris continues to evolve, its focus on
delivering a balanced, powerful, and user-friendly analytical database ensures it will remain a
compelling choice for organizations seeking to derive real-time insights from their data.

Works cited

1.​ Introduction to Apache Doris, accessed August 19, 2025,
https://doris.apache.org/docs/gettingStarted/what-is-apache-doris

2.​ Introduction to Apache Doris - Medium, accessed August 19, 2025,
https://medium.com/@ApacheDoris/introduction-to-apache-doris-incubating-48
aaa1df34ae

3.​ Apache Doris is an easy-to-use, high performance and unified analytics
database. - GitHub, accessed August 19, 2025, https://github.com/apache/doris

4.​ Introduction to Apache Doris, accessed August 19, 2025,
https://doris.apache.org/docs/dev/gettingStarted/what-is-apache-doris/

5.​ How does Apache Doris help AISPEECH build a data warehouse in AI chatbots
scenario, accessed August 19, 2025,
https://doris.apache.org/blog/Use-Apache-Doris-with-AI-chatbots/

6.​ Overview - Apache Doris, accessed August 19, 2025,
https://doris.apache.org/docs/dev/compute-storage-decoupled/overview

7.​ Slash your cost by 90% with Apache Doris Compute-Storage Decoupled Mode,
accessed August 19, 2025,
https://doris.apache.org/blog/doris-compute-storage-decoupled

8.​ Hybrid Row-Columnar Storage - Apache Doris, accessed August 19, 2025,
https://doris.apache.org/docs/dev/table-design/row-store/

9.​ Steps to industry-leading query speed: evolution of the Apache Doris execution
engine, accessed August 19, 2025,
https://doris.apache.org/blog/evolution-of-the-apache-doris-execution-engine/

10.​Query Optimizers - Apache Doris, accessed August 19, 2025,
https://doris.apache.org/docs/query-acceleration/optimization-technology-princi
ple/query-optimizer/

11.​Introduction to Apache Doris Baeldung on SQL, accessed August 19, 2025,
https://www.baeldung.com/sql/apache-doris-tutorial

12.​Introduction to Apache Doris: a next-generation real-time data warehouse,
accessed August 19, 2025,
https://doris.apache.org/blog/introduction-to-apache-doris-a-next-generation-r
eal-time-data-warehouse/

13.​Introduction to Apache Doris, accessed August 19, 2025,
https://doris.apache.org/docs/gettingStarted/what-is-apache-doris/

14.​FE Configuration - Apache Doris, accessed August 19, 2025,
https://doris.apache.org/docs/2.0/admin-manual/config/fe-config

https://doris.apache.org/docs/gettingStarted/what-is-apache-doris
https://medium.com/@ApacheDoris/introduction-to-apache-doris-incubating-48aaa1df34ae
https://medium.com/@ApacheDoris/introduction-to-apache-doris-incubating-48aaa1df34ae
https://github.com/apache/doris
https://doris.apache.org/docs/dev/gettingStarted/what-is-apache-doris/
https://doris.apache.org/blog/Use-Apache-Doris-with-AI-chatbots/
https://doris.apache.org/docs/dev/compute-storage-decoupled/overview
https://doris.apache.org/blog/doris-compute-storage-decoupled
https://doris.apache.org/docs/dev/table-design/row-store/
https://doris.apache.org/blog/evolution-of-the-apache-doris-execution-engine/
https://doris.apache.org/docs/query-acceleration/optimization-technology-principle/query-optimizer/
https://doris.apache.org/docs/query-acceleration/optimization-technology-principle/query-optimizer/
https://www.baeldung.com/sql/apache-doris-tutorial
https://doris.apache.org/blog/introduction-to-apache-doris-a-next-generation-real-time-data-warehouse/
https://doris.apache.org/blog/introduction-to-apache-doris-a-next-generation-real-time-data-warehouse/
https://doris.apache.org/docs/gettingStarted/what-is-apache-doris/
https://doris.apache.org/docs/2.0/admin-manual/config/fe-config

15.​Deploying Apache Doris with sample Docker Compose results in FE and BE
errors, accessed August 19, 2025,
https://stackoverflow.com/questions/77572877/deploying-apache-doris-with-sam
ple-docker-compose-results-in-fe-and-be-errors

16.​Compaction - Apache Doris, accessed August 19, 2025,
https://doris.apache.org/docs/2.0/admin-manual/compaction/

17.​Introduction to Apache Doris: A next-generation real-time data warehouse |
VeloDB, accessed August 19, 2025, https://www.velodb.io/blog/127

18.​ADD BACKEND - Apache Doris, accessed August 19, 2025,
https://doris.apache.org/docs/sql-manual/sql-statements/cluster-management/in
stance-management/ADD-BACKEND

19.​Routine Load - Apache Doris, accessed August 19, 2025,
https://doris.apache.org/docs/data-operate/import/import-way/routine-load-man
ual/

20.​Slash your cost by 90% with Apache Doris Compute-Storage Decoupled Mode -
Medium, accessed August 19, 2025,
https://medium.com/@ApacheDoris/slash-your-cost-by-90-with-apache-doris-c
ompute-storage-decoupled-mode-898116c268d0

21.​How the Apache Doris Compute-Storage Decoupled Mode Cuts 70% of Storage
Costs—in 60 Seconds - YouTube, accessed August 19, 2025,
https://www.youtube.com/watch?v=zGaVcAOp7yE

22.​Optimizing Analytical Workloads: Exploring the Columnar Storage Architecture of
Apache Doris - Dataprophesy, accessed August 19, 2025,
https://dataprophesy.com/optimizing-analytical-workloads-exploring-the-column
ar-storage-architecture-of-apache-doris/

23.​Introduction to Apache Doris Storage Layer Design — Explanation of Storage
Structure Design - Medium, accessed August 19, 2025,
https://medium.com/@ApacheDoris/introduction-to-apache-doris-storage-layer-
design-explanation-of-storage-structure-design-83f083acddce

24.​Apache Doris Storage Layer Design and Storage Structure - DZone, accessed
August 19, 2025,
https://dzone.com/articles/analysis-of-storage-structure-design-one-of-apache

25.​Hybrid Row-Columnar Storage - Apache Doris, accessed August 19, 2025,
https://doris.apache.org/docs/table-design/row-store

26.​High-Concurrency Point Query Optimization - Apache Doris, accessed August 19,
2025,
https://doris.apache.org/docs/query-acceleration/high-concurrent-point-query/

27.​Table Model Overview - Apache Doris, accessed August 19, 2025,
https://doris.apache.org/docs/table-design/data-model/overview/

28.​Best Practices - Apache Doris, accessed August 19, 2025,
https://doris.apache.org/docs/2.0/table-design/best-practice/

29.​Integrate Apache Doris Into Your Data Architecture: Real-time Data Warehousing,
accessed August 19, 2025,
https://hackernoon.com/integrate-apache-doris-into-your-data-architecture-real
-time-data-warehousing

https://stackoverflow.com/questions/77572877/deploying-apache-doris-with-sample-docker-compose-results-in-fe-and-be-errors
https://stackoverflow.com/questions/77572877/deploying-apache-doris-with-sample-docker-compose-results-in-fe-and-be-errors
https://doris.apache.org/docs/2.0/admin-manual/compaction/
https://www.velodb.io/blog/127
https://doris.apache.org/docs/sql-manual/sql-statements/cluster-management/instance-management/ADD-BACKEND
https://doris.apache.org/docs/sql-manual/sql-statements/cluster-management/instance-management/ADD-BACKEND
https://doris.apache.org/docs/data-operate/import/import-way/routine-load-manual/
https://doris.apache.org/docs/data-operate/import/import-way/routine-load-manual/
https://medium.com/@ApacheDoris/slash-your-cost-by-90-with-apache-doris-compute-storage-decoupled-mode-898116c268d0
https://medium.com/@ApacheDoris/slash-your-cost-by-90-with-apache-doris-compute-storage-decoupled-mode-898116c268d0
https://www.youtube.com/watch?v=zGaVcAOp7yE
https://dataprophesy.com/optimizing-analytical-workloads-exploring-the-columnar-storage-architecture-of-apache-doris/
https://dataprophesy.com/optimizing-analytical-workloads-exploring-the-columnar-storage-architecture-of-apache-doris/
https://medium.com/@ApacheDoris/introduction-to-apache-doris-storage-layer-design-explanation-of-storage-structure-design-83f083acddce
https://medium.com/@ApacheDoris/introduction-to-apache-doris-storage-layer-design-explanation-of-storage-structure-design-83f083acddce
https://dzone.com/articles/analysis-of-storage-structure-design-one-of-apache
https://doris.apache.org/docs/table-design/row-store
https://doris.apache.org/docs/query-acceleration/high-concurrent-point-query/
https://doris.apache.org/docs/table-design/data-model/overview/
https://doris.apache.org/docs/2.0/table-design/best-practice/
https://hackernoon.com/integrate-apache-doris-into-your-data-architecture-real-time-data-warehousing
https://hackernoon.com/integrate-apache-doris-into-your-data-architecture-real-time-data-warehousing

30.​Automatic and flexible data sharding: Auto Partition in Apache Doris - Medium,
accessed August 19, 2025,
https://medium.com/@ApacheDoris/automatic-and-flexible-data-sharding-auto-
partition-in-apache-doris-486c1ee8b64c

31.​Data Distribution Concept - Apache Doris, accessed August 19, 2025,
https://doris.apache.org/docs/3.0/table-design/data-partitioning/data-distribution

32.​Data Distribution Concept - Apache Doris, accessed August 19, 2025,
https://doris.apache.org/docs/3.0/table-design/data-partitioning/data-distribution
/

33.​Manual partitioning - Apache Doris, accessed August 19, 2025,
https://doris.apache.org/docs/table-design/data-partitioning/manual-partitioning/

34.​Data Bucketing - Apache Doris, accessed August 19, 2025,
https://doris.apache.org/docs/table-design/data-partitioning/data-bucketing/

35.​Manual bucketing - Apache Doris, accessed August 19, 2025,
https://doris.apache.org/docs/table-design/data-partitioning/manual-bucketing/

36.​What Exactly Are Tablets and Buckets in Apache Doris, What Is the Difference,
and How to Configure Them Correctly? | by Gerald Li | Medium, accessed August
19, 2025,
https://medium.com/@yyli810222/what-exactly-are-tablets-and-buckets-in-apac
he-doris-what-is-the-difference-and-how-to-configure-c9dc655f85d8

37.​Deep Dive into the Apache Doris Optimizer: Unveiling the Magic with Examples,
accessed August 19, 2025,
https://dataprophesy.com/deep-dive-into-the-apache-doris-optimizer-unveiling-
the-magic-with-examples/

38.​Runtime Filter - Apache Doris, accessed August 19, 2025,
https://doris.apache.org/docs/2.0/query/join-optimization/runtime-filter/

39.​Parallel Execution - Apache Doris, accessed August 19, 2025,
https://doris.apache.org/docs/query-acceleration/optimization-technology-princi
ple/pipeline-execution-engine/

40.​A Glimpse of the Next generation Analytical Database · apache/doris Wiki -
GitHub, accessed August 19, 2025,
https://github.com/apache/doris/wiki/A-Glimpse-of-the-Next-generation-Analytic
al-Database

41.​Query Analysis - Apache Doris, accessed August 19, 2025,
https://doris.apache.org/docs/2.0/query/query-analysis/query-analytics/

42.​EXPLAIN - Apache Doris, accessed August 19, 2025,
https://doris.apache.org/docs/sql-manual/sql-statements/data-query/EXPLAIN/

43.​Introduction to Apache Doris: A Next-Generation Real-Time Data Warehouse |
HackerNoon, accessed August 19, 2025,
https://hackernoon.com/introduction-to-apache-doris-a-next-generation-real-ti
me-data-warehouse

44.​Stream Load - Apache Doris, accessed August 19, 2025,
https://doris.apache.org/docs/data-operate/import/import-way/stream-load-man
ual

45.​Broker Load - Apache Doris, accessed August 19, 2025,

https://medium.com/@ApacheDoris/automatic-and-flexible-data-sharding-auto-partition-in-apache-doris-486c1ee8b64c
https://medium.com/@ApacheDoris/automatic-and-flexible-data-sharding-auto-partition-in-apache-doris-486c1ee8b64c
https://doris.apache.org/docs/3.0/table-design/data-partitioning/data-distribution
https://doris.apache.org/docs/3.0/table-design/data-partitioning/data-distribution/
https://doris.apache.org/docs/3.0/table-design/data-partitioning/data-distribution/
https://doris.apache.org/docs/table-design/data-partitioning/manual-partitioning/
https://doris.apache.org/docs/table-design/data-partitioning/data-bucketing/
https://doris.apache.org/docs/table-design/data-partitioning/manual-bucketing/
https://medium.com/@yyli810222/what-exactly-are-tablets-and-buckets-in-apache-doris-what-is-the-difference-and-how-to-configure-c9dc655f85d8
https://medium.com/@yyli810222/what-exactly-are-tablets-and-buckets-in-apache-doris-what-is-the-difference-and-how-to-configure-c9dc655f85d8
https://dataprophesy.com/deep-dive-into-the-apache-doris-optimizer-unveiling-the-magic-with-examples/
https://dataprophesy.com/deep-dive-into-the-apache-doris-optimizer-unveiling-the-magic-with-examples/
https://doris.apache.org/docs/2.0/query/join-optimization/runtime-filter/
https://doris.apache.org/docs/query-acceleration/optimization-technology-principle/pipeline-execution-engine/
https://doris.apache.org/docs/query-acceleration/optimization-technology-principle/pipeline-execution-engine/
https://github.com/apache/doris/wiki/A-Glimpse-of-the-Next-generation-Analytical-Database
https://github.com/apache/doris/wiki/A-Glimpse-of-the-Next-generation-Analytical-Database
https://doris.apache.org/docs/2.0/query/query-analysis/query-analytics/
https://doris.apache.org/docs/sql-manual/sql-statements/data-query/EXPLAIN/
https://hackernoon.com/introduction-to-apache-doris-a-next-generation-real-time-data-warehouse
https://hackernoon.com/introduction-to-apache-doris-a-next-generation-real-time-data-warehouse
https://doris.apache.org/docs/data-operate/import/import-way/stream-load-manual
https://doris.apache.org/docs/data-operate/import/import-way/stream-load-manual

https://doris.apache.org/docs/data-operate/import/import-way/broker-load-man
ual

46.​Implementation Design for Spark Load - Apache Doris, accessed August 19, 2025,
https://doris.apache.org/community/design/spark_load/

47.​Broker Load - Apache Doris, accessed August 19, 2025,
https://doris.apache.org/docs/2.0/data-operate/import/broker-load-manual/

48.​Routine Load - Apache Doris, accessed August 19, 2025,
https://doris.apache.org/docs/2.0/data-operate/import/routine-load-manual/

49.​Insert Into - Apache Doris, accessed August 19, 2025,
https://doris.apache.org/docs/2.0/data-operate/import/insert-into-manual/

50.​doris.apache.org, accessed August 19, 2025,
https://doris.apache.org/community/design/spark_load/#:~:text=Doris%20support
s%20various%20data%20ingestion,time%20data%20ingestion%20into%20Doris.

51.​Understanding data compaction in 3 minutes - Apache Doris, accessed August
19, 2025,
https://doris.apache.org/blog/Understanding-Data-Compaction-in-3-Minutes/

52.​Loading Overview - Apache Doris, accessed August 19, 2025,
https://doris.apache.org/docs/2.0/data-operate/import/load-manual/

53.​Load High Availability - Apache Doris, accessed August 19, 2025,
https://doris.apache.org/docs/dev/data-operate/import/load-high-availability/

54.​Concurrency Control for Updates in the Primary Key Model - Apache Doris,
accessed August 19, 2025,
https://doris.apache.org/docs/data-operate/update/unique-update-concurrent-c
ontrol/

55.​Concurrency Control and Queuing - Apache Doris, accessed August 19, 2025,
https://doris.apache.org/docs/admin-manual/workload-management/concurrenc
y-control-and-queuing/

56.​Load Best Practices - Apache Doris, accessed August 19, 2025,
https://doris.apache.org/docs/data-operate/import/load-best-practices/

57.​High Concurrency LOAD Optimization(Group Commit) - Apache Doris, accessed
August 19, 2025,
https://doris.apache.org/docs/data-operate/import/group-commit-manual/

58.​Materialized View - Apache Doris, accessed August 19, 2025,
https://doris.apache.org/docs/2.0/query/view-materialized-view/materialized-view
/

59.​Materialized View Overview - Apache Doris, accessed August 19, 2025,
https://doris.apache.org/docs/query-acceleration/materialized-view/overview/

60.​Sync-Materialized View - Apache Doris, accessed August 19, 2025,
https://doris.apache.org/docs/dev/query-acceleration/materialized-view/sync-mat
erialized-view

61.​Overview of Asynchronous Materialized Views - Apache Doris, accessed August
19, 2025,
https://doris.apache.org/docs/query-acceleration/materialized-view/async-materi
alized-view/overview/

62.​Creating, Querying, and Maintaining Asynchronous Materialized Views - Apache

https://doris.apache.org/docs/data-operate/import/import-way/broker-load-manual
https://doris.apache.org/docs/data-operate/import/import-way/broker-load-manual
https://doris.apache.org/community/design/spark_load/
https://doris.apache.org/docs/2.0/data-operate/import/broker-load-manual/
https://doris.apache.org/docs/2.0/data-operate/import/routine-load-manual/
https://doris.apache.org/docs/2.0/data-operate/import/insert-into-manual/
https://doris.apache.org/community/design/spark_load/#:~:text=Doris%20supports%20various%20data%20ingestion,time%20data%20ingestion%20into%20Doris.
https://doris.apache.org/community/design/spark_load/#:~:text=Doris%20supports%20various%20data%20ingestion,time%20data%20ingestion%20into%20Doris.
https://doris.apache.org/blog/Understanding-Data-Compaction-in-3-Minutes/
https://doris.apache.org/docs/2.0/data-operate/import/load-manual/
https://doris.apache.org/docs/dev/data-operate/import/load-high-availability/
https://doris.apache.org/docs/data-operate/update/unique-update-concurrent-control/
https://doris.apache.org/docs/data-operate/update/unique-update-concurrent-control/
https://doris.apache.org/docs/admin-manual/workload-management/concurrency-control-and-queuing/
https://doris.apache.org/docs/admin-manual/workload-management/concurrency-control-and-queuing/
https://doris.apache.org/docs/data-operate/import/load-best-practices/
https://doris.apache.org/docs/data-operate/import/group-commit-manual/
https://doris.apache.org/docs/2.0/query/view-materialized-view/materialized-view/
https://doris.apache.org/docs/2.0/query/view-materialized-view/materialized-view/
https://doris.apache.org/docs/query-acceleration/materialized-view/overview/
https://doris.apache.org/docs/dev/query-acceleration/materialized-view/sync-materialized-view
https://doris.apache.org/docs/dev/query-acceleration/materialized-view/sync-materialized-view
https://doris.apache.org/docs/query-acceleration/materialized-view/async-materialized-view/overview/
https://doris.apache.org/docs/query-acceleration/materialized-view/async-materialized-view/overview/

Doris, accessed August 19, 2025,
https://doris.apache.org/docs/query-acceleration/materialized-view/async-materi
alized-view/functions-and-demands/

63.​Optimizing Table Index Design - Apache Doris, accessed August 19, 2025,
https://doris.apache.org/docs/query-acceleration/tuning/tuning-plan/optimizing-t
able-index/

64.​Index Overview - Apache Doris, accessed August 19, 2025,
https://doris.apache.org/docs/table-design/index/index-overview

65.​BloomFilter Index - Apache Doris, accessed August 19, 2025,
https://doris.apache.org/docs/table-design/index/bloomfilter/

66.​Bitmap Index - Apache Doris, accessed August 19, 2025,
https://doris.apache.org/docs/table-design/index/bitmap-index/

67.​Metadata Cache - Apache Doris, accessed August 19, 2025,
https://doris.apache.org/docs/lakehouse/meta-cache/

68.​Building the next-generation data lakehouse: 10X performance - Apache Doris,
accessed August 19, 2025,
https://doris.apache.org/blog/Building-the-Next-Generation-Data-Lakehouse-10
X-Performance/

69.​Apache Doris vs Trino / Presto, accessed August 19, 2025,
https://doris.apache.org/docs/dev/gettingStarted/alternatives/alternative-to-trino/

70.​Tuning Process - Apache Doris, accessed August 19, 2025,
https://doris.apache.org/docs/3.0/query-acceleration/performance-tuning-overvi
ew/tuning-process/

71.​It's 2025: How Do You Choose Between Doris and ClickHouse? | by Zen - Medium,
accessed August 19, 2025,
https://medium.com/@ith321.vip/its-2025-how-do-you-choose-between-doris-a
nd-clickhouse-7d98456d9199

72.​A Deep Dive into Apache Doris vs. ClickHouse - DZone, accessed August 19,
2025, https://dzone.com/articles/apache-doris-vs-clickhouse-real-time-analytics

73.​Apache Druid, TiDB, ClickHouse, or Apache Doris? A Comparison of OLAP Tools |
HackerNoon, accessed August 19, 2025,
https://hackernoon.com/apache-druid-tidb-clickhouse-or-apache-doris-a-comp
arison-of-olap-tools

74.​Difference between Starrocks and Doris : r/dataengineering - Reddit, accessed
August 19, 2025,
https://www.reddit.com/r/dataengineering/comments/134s3hl/difference_betwee
n_starrocks_and_doris/

75.​Apache Doris or StarRocks? Here's what you should know - Medium, accessed
August 19, 2025,
https://medium.com/@ApacheDoris/apache-doris-or-starrocks-heres-what-you-
should-know-f8a3573e6b04

76.​FAQ: Apache Doris vs. StarRocks - Presentations, Articles and Webinars,
accessed August 19, 2025,
https://forum.starrocks.io/t/faq-apache-doris-vs-starrocks/128

77.​Compare Apache Doris vs. Trino in 2025 - Slashdot, accessed August 19, 2025,

https://doris.apache.org/docs/query-acceleration/materialized-view/async-materialized-view/functions-and-demands/
https://doris.apache.org/docs/query-acceleration/materialized-view/async-materialized-view/functions-and-demands/
https://doris.apache.org/docs/query-acceleration/tuning/tuning-plan/optimizing-table-index/
https://doris.apache.org/docs/query-acceleration/tuning/tuning-plan/optimizing-table-index/
https://doris.apache.org/docs/table-design/index/index-overview
https://doris.apache.org/docs/table-design/index/bloomfilter/
https://doris.apache.org/docs/table-design/index/bitmap-index/
https://doris.apache.org/docs/lakehouse/meta-cache/
https://doris.apache.org/blog/Building-the-Next-Generation-Data-Lakehouse-10X-Performance/
https://doris.apache.org/blog/Building-the-Next-Generation-Data-Lakehouse-10X-Performance/
https://doris.apache.org/docs/dev/gettingStarted/alternatives/alternative-to-trino/
https://doris.apache.org/docs/3.0/query-acceleration/performance-tuning-overview/tuning-process/
https://doris.apache.org/docs/3.0/query-acceleration/performance-tuning-overview/tuning-process/
https://medium.com/@ith321.vip/its-2025-how-do-you-choose-between-doris-and-clickhouse-7d98456d9199
https://medium.com/@ith321.vip/its-2025-how-do-you-choose-between-doris-and-clickhouse-7d98456d9199
https://dzone.com/articles/apache-doris-vs-clickhouse-real-time-analytics
https://hackernoon.com/apache-druid-tidb-clickhouse-or-apache-doris-a-comparison-of-olap-tools
https://hackernoon.com/apache-druid-tidb-clickhouse-or-apache-doris-a-comparison-of-olap-tools
https://www.reddit.com/r/dataengineering/comments/134s3hl/difference_between_starrocks_and_doris/
https://www.reddit.com/r/dataengineering/comments/134s3hl/difference_between_starrocks_and_doris/
https://medium.com/@ApacheDoris/apache-doris-or-starrocks-heres-what-you-should-know-f8a3573e6b04
https://medium.com/@ApacheDoris/apache-doris-or-starrocks-heres-what-you-should-know-f8a3573e6b04
https://forum.starrocks.io/t/faq-apache-doris-vs-starrocks/128

https://slashdot.org/software/comparison/Apache-Doris-vs-Trino/
78.​Comparing Trino, ClickHouse, and Apache Doris - CloudThat, accessed August

19, 2025,
https://www.cloudthat.com/resources/blog/comparing-trino-clickhouse-and-apa
che-doris

79.​Apache Doris vs. Trino Comparison - SourceForge, accessed August 19, 2025,
https://sourceforge.net/software/compare/Apache-Doris-vs-Trino/

80.​Another big leap: Apache Doris 2.1.0 is released, accessed August 19, 2025,
https://doris.apache.org/blog/release-note-2.1.0/

https://slashdot.org/software/comparison/Apache-Doris-vs-Trino/
https://www.cloudthat.com/resources/blog/comparing-trino-clickhouse-and-apache-doris
https://www.cloudthat.com/resources/blog/comparing-trino-clickhouse-and-apache-doris
https://sourceforge.net/software/compare/Apache-Doris-vs-Trino/
https://doris.apache.org/blog/release-note-2.1.0/

	A Comprehensive Analysis of Apache Doris Internals
	Section 1: Executive Summary
	Section 2: Core Architectural Principles
	2.1 The Two-Process Model: Frontend (FE) and Backend (BE)
	Frontend (FE) Deep Dive
	Backend (BE) Deep Dive
	FE-BE Interaction

	2.2 Architectural Evolution: From Coupled to Decoupled
	The Classic Coupled Architecture (Shared-Nothing)
	The Modern Decoupled Architecture
	Analysis of Architectural Trade-offs

	Section 3: The Storage Engine: Physical and Logical Data Organization
	3.1 Columnar Storage and Its Optimizations
	3.2 Logical Data Models: Tailoring Storage to Workloads
	3.3 Data Distribution: Partitioning and Bucketing

	Section 4: Query Lifecycle: From SQL to Results
	4.1 The Query Optimizer: Crafting the Optimal Plan
	4.2 The Execution Engine: From Volcano to Pipeline
	4.3 Distributed Execution Plan

	Section 5: Data Management and System Operations
	5.1 Data Ingestion Mechanisms
	5.2 Data Compaction and Maintenance
	5.3 Concurrency, Consistency, and Transactions

	Section 6: Performance Acceleration and Advanced Features
	6.1 Materialized Views: Pre-computation for Speed
	6.2 Multi-Layered Indexing Strategy
	6.3 Caching Mechanisms

	Section 7: Comparative Architectural Analysis
	7.1 Doris vs. ClickHouse
	7.2 Doris vs. StarRocks
	7.3 Doris vs. Trino (Presto)

	Section 8: Conclusion and Future Outlook
	Works cited

