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Section 1: Executive Summary 
 

Apache Doris is a modern, Massively Parallel Processing (MPP)-based real-time analytical 
data warehouse engineered to deliver sub-second query performance on massive datasets.1 
Since its donation to the Apache Software Foundation and subsequent graduation as a 
Top-Level Project, Doris has established itself as a formidable tool for a wide range of 
analytical applications, including high-concurrency reporting, ad-hoc analysis, and data lake 
query acceleration.3 Its adoption by over 5,000 enterprises globally, including technology 
giants like TikTok and Tencent, underscores its capability to handle demanding production 
workloads.1 This report provides a deeply technical exegesis of the internal mechanisms that 
underpin Apache Doris, dissecting its architecture, storage engine, query processing pipeline, 
and data management operations to reveal the design principles that enable its performance 
and scalability. 

At the heart of Doris lies a deliberately simplified two-process architecture, comprising 
Frontend (FE) and Backend (BE) nodes. This highly integrated model is a cornerstone of its 
operational simplicity, significantly reducing the maintenance overhead often associated with 
complex, multi-component big data ecosystems.1 The FE serves as the cluster's brain, 
managing metadata, coordinating nodes, and meticulously planning queries, while the BEs act 
as the workhorses, responsible for data storage and the physical execution of computational 
tasks. 

A pivotal aspect of Doris's evolution is its architectural duality. While rooted in a traditional 
compute-storage coupled (Shared-Nothing) model that maximizes performance through data 
locality, Doris has embraced a modern compute-storage decoupled architecture tailored for 
cloud-native environments.6 This elastic model separates stateless compute resources from a 
shared, low-cost storage layer, enabling independent scaling, fine-grained workload isolation, 
and significant cost efficiencies—critical requirements for contemporary data platforms. 

The system's remarkable performance is not the result of a single feature but a synergy of 
sophisticated internal components. Its foundation is a columnar storage engine that minimizes 



I/O and maximizes data compression, augmented by a hybrid row-columnar format to 
accelerate point queries.2 Atop this storage layer, a state-of-the-art query execution engine 
combines the raw CPU efficiency of vectorization with the high-concurrency capabilities of a 
non-blocking Pipeline model.1 This execution is guided by an advanced query optimizer that 
leverages both rule-based heuristics and cost-based analysis to craft highly efficient 
distributed plans.10 

This report aims to deconstruct these core components and their intricate interactions. It will 
explore the physical and logical organization of data, the complete lifecycle of a query from 
SQL text to final result set, the various mechanisms for data ingestion and maintenance, and 
the advanced features like materialized views and multi-layered indexing that accelerate 
performance. By providing a comprehensive analysis of the design trade-offs and engineering 
principles embedded within Doris, this document serves as a definitive guide for data 
architects, principal engineers, and database researchers seeking to understand and leverage 
the full power of this next-generation analytical database. 

 

Section 2: Core Architectural Principles 
 

The architecture of Apache Doris is defined by a commitment to simplicity, scalability, and 
high availability. Its design revolves around two primary processes—Frontend (FE) and 
Backend (BE)—which collaborate to provide a unified and robust analytical platform. This 
foundational model has evolved to support both tightly-coupled and decoupled deployment 
patterns, offering flexibility to meet diverse performance and cost requirements. 

 

2.1 The Two-Process Model: Frontend (FE) and Backend (BE) 
 

Unlike many big data systems that rely on a complex stack of external components, Doris is 
built on a highly integrated, self-contained architecture consisting of only two core service 
types. This design choice is fundamental to its reputation for ease of deployment and low 
operational overhead.2 

 

Frontend (FE) Deep Dive 

 



The Frontend (FE) node serves as the brain and coordinator of the entire Doris cluster. Its 
responsibilities are multifaceted, encompassing client interaction, query management, and 
cluster governance.6 

●​ Responsibilities: The FE is the entry point for all client requests. It is compatible with the 
MySQL protocol, a crucial feature that enables seamless integration with a vast 
ecosystem of existing BI tools, SQL clients, and data integration platforms.2 Upon 
receiving an SQL query, the FE performs parsing, semantic analysis, query planning, and 
optimization to generate an efficient distributed execution plan.1 It also manages all 
cluster-wide metadata, including table schemas, partitioning rules, data replica locations, 
and user access privileges.6 Finally, it monitors the health of all Backend nodes and 
orchestrates query execution across the cluster. 

●​ High Availability (HA): To prevent a single point of failure, FE nodes are deployed in a 
high-availability cluster. They use a Paxos-like consistency protocol, specifically Berkeley 
DB Java Edition (BDB JE), to replicate metadata changes and elect a leader (Master).13 
The cluster consists of three roles: 
○​ Master: A single, elected FE node responsible for all metadata write operations. 
○​ Follower: Replicates metadata from the Master and can serve metadata read 

requests. In the event of a Master failure, a Follower is elected as the new Master. 
○​ Observer: Replicates metadata and serves read requests but does not participate in 

leader elections. Observers are primarily used to scale out the cluster's capacity for 
handling concurrent queries without adding to the election overhead.1​
​
This multi-role setup ensures both metadata durability and high read throughput. 
The FE processes themselves are horizontally scalable, allowing more nodes to be 
added to handle increased client connections and query planning load.1 

●​ Metadata Management: The FE stores all system metadata in its memory for fast 
access and persists it to a local disk, typically in a directory named doris-meta.14 This 
comprehensive metadata catalog is the single source of truth for the entire cluster's 
state. 

 

Backend (BE) Deep Dive 

 

The Backend (BE) node is the workhorse of the Doris cluster, handling the heavy lifting of data 
storage and computation.6 

●​ Responsibilities: The primary functions of a BE are to store data tablets (the physical 
shards of data) and to execute the query fragments dispatched by the FE.1 When a query 
plan is executed, BEs scan local data, perform computations like filtering and 
aggregation, and shuffle intermediate data to other BEs as required by the plan. BEs also 



manage various background tasks essential for system health and performance, such as 
data compaction, schema changes, and replica balancing.11 

●​ Scalability and Data Reliability: BEs are designed for horizontal scalability; new nodes 
can be added to the cluster to linearly increase both storage capacity and computational 
power, supporting clusters with hundreds of nodes and petabytes of data.1 Data reliability 
is ensured by storing multiple replicas of each data tablet on different BE nodes. A 
quorum-based replication protocol is used for writes, ensuring that data is durable even 
if some nodes fail.13 The system can automatically detect node failures and clone missing 
replicas to restore the desired replication level, providing self-healing capabilities.12 

 

FE-BE Interaction 

 

The FE and BE nodes maintain continuous communication to ensure smooth cluster operation: 

●​ BEs send regular heartbeat signals to the FE, which contain information about node 
health, disk usage, and tablet status.18 

●​ The FE dispatches query plan fragments to the appropriate BEs based on data locality 
information stored in its metadata.9 

●​ BEs report the status of their tasks (e.g., query execution, data loading, compaction) 
back to the FE, which updates the global state accordingly.19 

●​ Cluster topology changes, such as adding a new BE node via the ADD BACKEND 
command, are managed by the FE, which then orchestrates the process of data 
rebalancing to utilize the new resources.18 

 

2.2 Architectural Evolution: From Coupled to Decoupled 
 

Doris was initially conceived with a classic compute-storage coupled architecture but has 
since evolved to embrace a more flexible, cloud-native decoupled model. This evolution 
reflects a strategic response to the changing demands of modern data platforms, particularly 
the need for elasticity and cost optimization. 

 

The Classic Coupled Architecture (Shared-Nothing) 

 



The traditional deployment model for Doris is a Shared-Nothing architecture where compute 
and storage are tightly co-located on the same BE nodes.6 This design is a hallmark of many 
high-performance MPP databases. 

●​ Design: Each BE node manages its own local disks and processes queries on the data it 
stores. This maximizes data locality, as computations can often be performed without 
transferring data over the network, which is a primary source of latency in distributed 
systems.6 

●​ Trade-offs: This model offers excellent performance and is relatively simple to deploy as 
it has no external system dependencies.6 However, it presents a significant challenge: 
compute and storage resources are scaled together. If a workload requires more 
computational power but not more storage (or vice versa), one set of resources is 
inevitably over-provisioned, leading to inefficiency and higher costs. 

 

The Modern Decoupled Architecture 

 

To address the limitations of the coupled model, Doris introduced a compute-storage 
decoupled architecture, which is particularly well-suited for cloud environments.6 This model 
fundamentally restructures the system into three distinct tiers.7 

●​ Three-Tier Structure: 
1.​ Shared Storage Layer: Instead of being stored on local BE disks, the primary data 

files (segments and indexes) are persisted in a centralized, shared storage system 
like a cloud object store (e.g., Amazon S3) or HDFS.6 These systems offer low-cost, 
highly durable storage, and their management is offloaded from Doris, simplifying 
operations.7 

2.​ Stateless Compute Layer: In this model, BE nodes become stateless compute 
resources. They do not store primary data permanently. To mitigate the performance 
penalty of accessing remote data, BEs use their local disks as a high-speed cache 
for frequently accessed data blocks.6 This allows hot data to be served with 
performance close to that of the coupled model, while cold data resides in cheaper 
object storage. These stateless BEs can be organized into logical​
Compute Groups, allowing different workloads or teams to have their own 
dedicated, elastically scalable compute resources while operating on the same 
shared data.6 

3.​ Meta Service: A new, stateless service is introduced to manage metadata in the 
decoupled mode. It handles critical functions like data import transaction processing 
and tablet metadata management, and it can be scaled horizontally to meet 
demand.6 



 

Analysis of Architectural Trade-offs 

 

The availability of both architectures allows users to choose the model that best fits their 
specific needs. This choice is not merely a technical detail but a strategic decision that 
impacts performance, cost, and operational flexibility. The move toward a decoupled 
architecture represents a fundamental pivot in Doris's strategy, aiming to capture the benefits 
of cloud-native design. This shift transforms the system's economic model. For instance, in 
the coupled model, data compaction must run on all three replicas, consuming three times 
the compute resources. In the decoupled model, with a single data replica in object storage, 
compaction runs only once, drastically reducing computational waste and cost.20 This 
positions Doris to compete effectively with leading cloud-native data warehouses by offering 
the elasticity, multi-tenancy, and cost-efficiency that modern enterprises demand. 

●​ Coupled Architecture: This model remains the optimal choice for performance-critical 
applications where minimizing I/O latency is the absolute priority. Its self-contained 
nature and reliance on data locality deliver the highest possible query speeds, making it 
ideal for on-premise deployments or scenarios where predictable, low-latency 
performance outweighs the benefits of elastic scaling.6 

●​ Decoupled Architecture: This model is the clear choice for cloud-native deployments 
and workloads with variable demand. It provides unparalleled elasticity, allowing 
compute resources to be scaled up or down independently of storage to match workload 
needs, thereby optimizing costs. It enables true workload isolation by allowing different 
teams to use separate Compute Groups on a shared data lake, preventing resource 
contention. Finally, it dramatically lowers storage costs by leveraging inexpensive object 
storage for the bulk of the data.6 

 

Section 3: The Storage Engine: Physical and Logical 
Data Organization 
 

The performance of any analytical database is fundamentally tied to how it stores and 
organizes data on disk. Apache Doris employs a highly optimized storage engine centered 
around a columnar format, complemented by sophisticated logical data models and 
distribution strategies. This multi-layered approach is designed to minimize I/O, maximize data 
compression, and enable massive parallelism during query execution. 



 

3.1 Columnar Storage and Its Optimizations 
 

The cornerstone of the Doris storage engine is its columnar storage format. Unlike traditional 
row-oriented databases that store all fields of a row contiguously, a columnar database stores 
all values for a single column together.2 

●​ Core Principle: This design is exceptionally well-suited for Online Analytical Processing 
(OLAP) workloads. Analytical queries typically aggregate or filter data based on a small 
subset of columns across millions or billions of rows. With columnar storage, the query 
engine only needs to read the data for the columns referenced in the query, dramatically 
reducing the amount of data read from disk compared to a row-oriented system that 
would have to read entire rows.13 

●​ Segment v2 File Format: Data on disk is physically organized into files called Segments. 
The "Segment v2" format is the modern structure used by Doris, which is meticulously 
designed for performance. Each Segment file is composed of three main parts 23: 
1.​ Data Region: This section contains the actual column data. The data for each 

column is stored separately and is further divided into smaller blocks called Pages 
(typically 64 KB). This paged structure allows for fine-grained data access and 
caching.23 

2.​ Index Region: To avoid loading data unnecessarily, all index structures (such as 
Ordinal, ZoneMap, and Bloom Filter indexes) are stored together in a separate region. 
This allows the query engine to load and consult the indexes for an entire column 
without touching the data pages themselves, enabling efficient data pruning.23 

3.​ Footer: The end of the file contains a footer with critical metadata about the 
segment. This includes schema information for each column, pointers to the location 
of each column's data and index pages, and a short key index for rapid seeking.23 

●​ Encoding and Compression: The homogeneity of data within a column makes it highly 
compressible. Doris applies various encoding and compression techniques tailored to the 
data type to reduce storage footprint and accelerate I/O. For example, it may use 
BIT_SHUFFLE for numeric types, Dictionary (DICT) encoding for low-cardinality strings, 
and Run-Length Encoding (RLE) for boolean values. These encodings not only save 
space but can also accelerate computations directly on the encoded data.22 

●​ Hybrid Row-Columnar Storage: While pure columnar storage excels at analytical scans, 
it introduces a significant performance penalty for point queries that retrieve an entire 
row (e.g., SELECT * FROM table WHERE primary_key = 'some_id'). In a wide table with 
hundreds of columns, such a query would require hundreds of separate disk I/Os, 
creating an I/O bottleneck.8 To address this, Doris offers an optional hybrid row-columnar 
storage model. When a user enables the​
"store_row_column" = "true" property on a table, Doris creates an additional, hidden 



column. This special column stores a binary-concatenated version of all the other 
columns in the row.8 When a point query is executed, the engine can retrieve the entire 
row's data with a single read from this row-store column, drastically improving 
performance for high-concurrency lookup scenarios.26 This feature represents a 
pragmatic compromise, positioning Doris for workloads that blur the line between pure 
OLAP and Hybrid Transactional/Analytical Processing (HTAP). It acknowledges that many 
real-world applications, such as user-facing dashboards, require both fast aggregations 
and rapid retrieval of individual records. This flexibility comes at the cost of increased 
storage consumption, a trade-off that allows architects to optimize for a wider range of 
query patterns.12 

 

3.2 Logical Data Models: Tailoring Storage to Workloads 
 

Beyond the physical layout, Doris requires users to define a logical data model at the time of 
table creation. This choice is immutable and fundamentally dictates how data is handled 
during ingestion and storage, effectively acting as a "schema-on-write" optimization 
strategy.27 This approach forces upfront design decisions to maximize query-time 
performance, contrasting with schema-on-read systems that offer more flexibility but often at 
the cost of slower query execution. Doris provides three distinct models 27: 

●​ Duplicate Key Model: This is the simplest model, storing all ingested rows exactly as 
they are, without any uniqueness or aggregation constraints.27 It is ideal for storing raw, 
immutable fact data, such as logs or event streams. This model offers the highest 
ingestion throughput and maximum flexibility for ad-hoc queries across any combination 
of dimensions, as it is not constrained by a pre-defined aggregation logic.13 

●​ Aggregate Key Model: This model is designed for reporting and dashboarding scenarios 
with fixed query patterns. During data ingestion, rows that share the same key columns 
are automatically aggregated. The non-key "value" columns are combined using a 
specified aggregation function (e.g., SUM, MIN, MAX, REPLACE). This pre-aggregation 
dramatically reduces the amount of data stored on disk and significantly accelerates 
queries that align with the aggregation definition.27 

●​ Unique Key Model: This model enforces the uniqueness of the key columns, effectively 
implementing an "upsert" (update or insert) semantic. When new data arrives with a key 
that already exists, the old row is replaced with the new one. This model is essential for 
use cases that require synchronizing data from transactional systems (e.g., via Change 
Data Capture) or any scenario involving frequent updates to existing records.27 To 
improve update performance, Doris offers a high-performance Merge-on-Write 
implementation for this model.28 



 

3.3 Data Distribution: Partitioning and Bucketing 
 

To manage massive datasets and enable parallel processing, Doris employs a two-level data 
distribution strategy: partitioning and bucketing.29 

●​ Two-Layer Sharding: A table's data is first logically divided into Partitions. Each 
partition is then further physically divided into Buckets. This two-tiered approach 
provides a powerful and flexible way to manage and query data.31 

●​ Partitioning: 
○​ Purpose: Partitioning is primarily used for data lifecycle management and query 

performance optimization through partition pruning. By dividing a table into smaller 
logical chunks based on a partition key, operations like deleting old data become 
trivial (simply drop a partition), and queries with filters on the partition key can skip 
reading irrelevant partitions entirely.30 

○​ Types and Management: Doris supports Range Partitioning, which is most 
common for time-series data (e.g., partitioning by day or month on a DATETIME 
column), and List Partitioning, for partitioning on discrete values (e.g., country code 
or city name).30 Partitions can be created manually, or their creation and deletion can 
be automated using the​
Dynamic Partitioning feature, which is ideal for managing rolling time windows of 
data.30 

●​ Bucketing: 
○​ Purpose: While partitioning provides logical data management, bucketing is about 

physical data distribution. Its goal is to evenly distribute the data within a partition 
across all BE nodes in the cluster to enable balanced, parallel query execution.30 It is 
also the key mechanism that enables advanced query optimizations like Colocate 
Join. 

○​ Methods: The primary method is Hash Bucketing, where data is assigned to a 
bucket based on the hash value of one or more specified bucket key columns.34 For 
cases where a suitable, evenly distributed hash key is not available,​
Random Bucketing can be used to prevent data skew by distributing rows 
randomly.34 

○​ Tablet: The fundamental unit of physical storage, replication, and balancing in Doris 
is the Tablet. A tablet is simply a bucket of data within a specific partition.30 For high 
availability, each tablet has multiple replicas stored on different BE nodes. The total 
number of tablets in a table is the number of partitions multiplied by the number of 
buckets per partition.31 

The following table provides a clear, at-a-glance reference for architects to choose the 



correct data model based on their specific use case requirements for data updates, query 
patterns, and performance. 

Table 3.1: Comparison of Doris Data Models 

Feature Duplicate Key 
Model 

Aggregate Key 
Model 

Unique Key Model 

Primary Use Case Storing raw, 
detailed fact data 
(e.g., logs, events) 
for ad-hoc analysis. 

Pre-aggregated 
reporting and 
dashboards with 
fixed query 
patterns (e.g., 
calculating daily 
SUMs, MINs, 
MAXs). 

Scenarios requiring 
real-time data 
updates or 
synchronization 
with transactional 
systems (upserts). 

Key Uniqueness Not enforced. 
Duplicate key rows 
are allowed and 
stored. 

Enforced. Keys are 
unique within the 
aggregated result. 

Enforced. Keys are 
unique, ensuring 
only one row per 
primary key. 

Data Ingestion 
Behavior 

All incoming rows 
are appended 
as-is. Highest 
ingestion 
performance. 

Rows with the same 
key are aggregated 
based on a defined 
function (SUM, 
REPLACE, etc.) 
during ingestion. 

New rows with an 
existing key 
overwrite (update) 
the old row. 

Update/Delete 
Support 

No support for 
UPDATE or DELETE 
statements. 

No support for 
UPDATE or DELETE. 
Partial column 
updates possible 
via 
REPLACE_IF_NOT_
NULL aggregation. 

Full support for 
UPDATE and 
DELETE 
statements. 
Supports partial 
column updates. 

Query 
Performance 

Excellent for 
ad-hoc queries 
across any 
dimension. No 

Extremely fast for 
queries that match 
the 
pre-aggregation. 

Good for point 
queries and 
updates. Cannot 
leverage 



pre-aggregation 
benefits. 

Less flexible for 
other query 
patterns. 

pre-aggregation 
benefits for 
analytical queries. 

 

Section 4: Query Lifecycle: From SQL to Results 
 

The journey of a query in Apache Doris is a sophisticated, multi-stage process designed to 
transform a declarative SQL statement into a highly optimized, parallelized execution plan. 
This process is orchestrated by the Frontend (FE) node and executed by the Backend (BE) 
nodes, leveraging an advanced query optimizer and a modern execution engine to achieve 
high performance. 

 

4.1 The Query Optimizer: Crafting the Optimal Plan 
 

The query optimizer is the intelligent core of the FE, responsible for finding the most efficient 
way to execute a given query. It employs a combination of rule-based and cost-based 
techniques to explore a vast search space of possible execution plans and select the best 
one.10 

●​ Multi-Stage Process: The optimization pipeline begins after a client sends an SQL string 
to the FE. 
1.​ Syntax and Semantic Analysis: The SQL text is first parsed into an Abstract Syntax 

Tree (AST). The analyzer then validates this tree, checking for the existence of tables 
and columns, verifying data types, and resolving function calls. If any errors are 
found, the query is rejected.10 

2.​ Rule-Based Optimization (RBO): The valid AST is transformed into an initial logical 
query plan. The RBO phase then applies a series of deterministic, heuristic-based 
rules to rewrite this plan into a more efficient form. Key transformations include: 
■​ Predicate Pushdown: Moving WHERE clause filters as close to the data source 

as possible to reduce the volume of data processed in later stages.2 

■​ Partition Pruning: Eliminating entire data partitions from the scan if they cannot 
possibly contain data that satisfies the query's filters. 

■​ Constant Folding: Evaluating constant expressions (e.g., 1 + 1) at planning time 
rather than execution time. 

■​ Subquery Rewriting: Transforming complex subqueries into more efficient join 



operations.10 

3.​ Cost-Based Optimization (CBO): Following RBO, the CBO takes over to handle 
more complex decisions, particularly the optimal join order for multi-table queries. 
Doris's CBO is based on the advanced Cascades optimization framework.10 It 
systematically explores various equivalent logical plans (e.g., joining tables A and B 
first, then C, versus joining B and C first, then A). For each potential plan, it uses 
stored statistics about the data (such as table cardinality and column value 
distribution) to estimate its execution "cost" in terms of CPU, I/O, and network 
resources. The plan with the lowest estimated cost is ultimately chosen for 
execution.2 

●​ Adaptive Query Execution with Runtime Filters: Doris's optimization does not stop at 
the planning phase; it continues dynamically during query execution. The most powerful 
adaptive technique is the Runtime Filter. When executing a hash join, the build side 
(typically the smaller table) constructs a filter based on the actual join key values it 
processes. This filter, which can be a Min/Max range, an IN predicate, or a Bloom Filter, is 
then sent to the BE nodes that are scanning the probe side (the larger table). The scan 
operator on the probe side applies this filter before reading data from disk, allowing it to 
skip entire data blocks or pages that could not possibly match the join condition. This 
technique can dramatically reduce I/O and network traffic, leading to significant 
performance gains, especially in selective joins.1 

 

4.2 The Execution Engine: From Volcano to Pipeline 
 

The execution engine, residing on the BE nodes, is responsible for bringing the physical plan 
to life. Doris has transitioned from a traditional execution model to a modern, highly parallel 
one. 

●​ Legacy Volcano Model: Early versions of Doris used the classic "Volcano" iterator 
model. In this pull-based system, each operator in the plan tree has a next() method. To 
get results, a parent operator calls next() on its child, which in turn calls next() on its own 
child, and so on, pulling data up the tree one row or batch at a time. While simple to 
implement, this model can suffer from inefficiencies, as a blocked operator (e.g., waiting 
for network data) can stall an entire execution thread.9 

●​ Modern Pipeline Execution Engine: To overcome the limitations of the Volcano model 
and handle high concurrency effectively, Doris implemented a Pipeline execution engine. 
This model is a direct and sophisticated solution to the classic MPP concurrency 
bottleneck where assigning one thread per query fragment leads to a "thread explosion" 
under high load, causing excessive context switching and overhead.1 

○​ Core Concept: The execution plan is broken down into a series of pipelines. A 
pipeline is a sequence of operators that can execute without blocking. Operators that 



inherently block, such as the build phase of a hash join or a network exchange, act as 
"pipeline breakers." They split the plan into multiple, dependent pipelines.9 

○​ Benefits: Instead of dedicating a thread to each part of a query, the Pipeline engine 
schedules executable pipeline tasks onto a fixed-size thread pool (usually sized to 
the number of available CPU cores). When a task needs to block (e.g., to wait for I/O), 
it yields its thread, which the scheduler can immediately assign to another ready 
task. This non-blocking, task-based scheduling model prevents threads from being 
held hostage by slow operations, dramatically improving overall CPU utilization and 
system throughput under high concurrency.9 

●​ Fully Vectorized Engine: Complementing the Pipeline model is a fully vectorized 
execution engine. 
○​ Core Concept: The engine processes data not row-by-row, but in batches (typically 

of 1024 rows) called vectors or blocks. These blocks are laid out in a columnar format 
in memory, mirroring the on-disk storage format.2 

○​ Benefits: This approach yields massive performance improvements by: 
1.​ Reducing Per-Row Overhead: The cost of function calls and control flow logic 

is amortized over an entire batch of rows. 
2.​ Improving CPU Cache Locality: Processing a single column's data sequentially 

leads to better cache utilization. 
3.​ Enabling SIMD: It allows the engine to leverage modern CPU's SIMD (Single 

Instruction, Multiple Data) instructions, which can perform the same operation 
(e.g., addition, comparison) on multiple data points simultaneously within a single 
CPU cycle.​
This combination of optimizations results in a 5 to 10-fold performance increase 
in CPU-bound analytical workloads like wide table aggregations.4 

The synergy between the CBO, Runtime Filters, and the Vectorized Engine creates a 
multi-layered performance strategy. The CBO provides static, global planning before 
execution begins. The Vectorized Engine optimizes the micro-level execution of each 
operation for maximum CPU efficiency. Finally, Runtime Filters add a dynamic, adaptive layer 
that optimizes data flow between operators at runtime. This comprehensive approach makes 
the query engine robust and performant across a wide variety of query patterns and data 
distributions. 

 

4.3 Distributed Execution Plan 
 

The final step in the FE is to convert the optimized single-node plan into a distributed plan 
that can be executed in parallel across the BE cluster. 

●​ From Logical to Physical Plan: The optimizer inserts ExchangeNode operators into the 



plan. These nodes represent data transfer (shuffling) points between BEs. For example, in 
a hash join between two tables distributed across the cluster, an ExchangeNode is 
needed to re-distribute the data from both tables to the BEs based on the hash of the 
join key, ensuring that rows with the same key end up on the same node for joining.39 

●​ Fragments: The physical plan is then partitioned into Fragments. A Fragment is a 
self-contained sub-plan that can be executed on a single BE node without interruption. 
The boundaries of fragments are typically the ExchangeNodes.9 The FE dispatches each 
fragment to one or more BEs for execution. 

●​ PipelineTasks: On a BE, each received Fragment is further compiled into a set of logical 
Pipelines. Each logical Pipeline is then instantiated into multiple parallel PipelineTasks, 
which are the actual units of work scheduled onto the engine's thread pool. This allows 
for both inter-node parallelism (multiple BEs working on different fragments) and 
intra-node parallelism (multiple threads on one BE working on different PipelineTasks).39 

●​ Local Shuffle: To prevent data skew within a single BE node, where one PipelineTask 
might receive significantly more data than others, the planner can insert a Local Shuffle 
operator. This operator acts as a pipeline breaker that re-distributes the data from an 
upstream pipeline evenly among all the tasks of a downstream pipeline, ensuring 
balanced execution and maximizing intra-node parallelism.9 

 

Section 5: Data Management and System Operations 
 

Effective data management is crucial for the performance and reliability of a data warehouse. 
Apache Doris provides a robust set of tools and automated processes for data ingestion, 
storage maintenance, and ensuring data consistency and concurrency. These internal 
operations are designed to support the demands of real-time analytics, from high-frequency 
data streams to large-scale batch updates. 

 

5.1 Data Ingestion Mechanisms 
 

Doris's role as a centralized analytical hub is reflected in its diverse and flexible data ingestion 
capabilities. It supports a comprehensive suite of methods catering to different data sources, 
volumes, and latency requirements, allowing it to integrate seamlessly into virtually any data 
architecture.29 

●​ Stream Load: This is a synchronous, push-based method where data is sent to a BE 
node via an HTTP request. The client application reads the data (e.g., from a local file or a 



data stream) and pushes it directly to Doris. The HTTP response immediately indicates 
the success or failure of the load job, making it suitable for scenarios that require 
real-time feedback and low-latency ingestion.12 

●​ Broker Load: This is an asynchronous, pull-based method designed for large-scale 
batch loading from remote storage systems like HDFS or cloud object stores (S3, GCS, 
etc.).29 The user submits a​
LOAD command to the FE, which then orchestrates the import. The BE nodes pull the 
data directly from the remote source in parallel. This method is ideal for offline ETL jobs 
and initial data migrations, as it offloads the data transfer work from the client to the 
Doris cluster itself.46 

●​ Routine Load: This method provides continuous, managed data ingestion from Apache 
Kafka. A user creates a persistent ROUTINE LOAD job on the FE, specifying the Kafka 
topic and connection details. The FE then automatically and continuously creates small, 
transactional micro-batch tasks to consume messages from Kafka and load them into 
Doris. This approach is designed for robust, real-time streaming pipelines and supports 
Exactly-Once semantics to prevent data loss or duplication.12 

●​ Insert Into: Doris supports the standard SQL INSERT INTO statement, which serves two 
primary purposes. INSERT INTO... VALUES is a synchronous command suitable for 
inserting small amounts of data for testing or ad-hoc purposes. More powerfully, INSERT 
INTO... SELECT acts as an internal ETL tool, allowing users to load data into a Doris table 
from the result of any valid SELECT query. This can be used to transform and move data 
between Doris tables or to ingest data from external tables defined via the Multi-Catalog 
feature.12 

●​ Spark Load: For extremely large datasets that require significant preprocessing before 
ingestion, Doris offers Spark Load. This method leverages an external Apache Spark 
cluster to perform complex transformations, sorting, and pre-aggregation on the source 
data. The processed data is then efficiently loaded into Doris. This offloads the 
resource-intensive ETL work from the BEs, preserving their resources for query 
execution.12 

 

5.2 Data Compaction and Maintenance 
 

Doris employs a storage architecture with characteristics similar to a Log-Structured 
Merge-Tree (LSM-Tree). When data is written, it creates new, immutable segment files on disk. 
This append-only approach is highly efficient for writes, but over time it can lead to a 
proliferation of small files, which would degrade read performance. Compaction is the critical 
background process that mitigates this issue.11 

●​ Purpose of Compaction: The primary goal of compaction is to periodically merge 



smaller segment files into larger, more optimally structured ones. This process improves 
query performance by reducing the number of files that need to be opened and scanned. 
Critically, compaction is also the mechanism by which data updates and deletions (in the 
Unique Key model) are physically applied to the data files.16 

●​ Compaction Strategies: Doris has evolved its compaction algorithms to be more 
efficient and less resource-intensive. 
○​ Cumulative and Base Compaction: The system distinguishes between two main 

types of compaction. Cumulative Compaction focuses on merging newly ingested, 
smaller, and more numerous rowsets quickly. Base Compaction is a heavier process 
that merges larger, older rowsets to create the final, optimized base version of the 
data.51 

○​ Vertical Compaction: For wide tables (tables with many columns), traditional 
compaction can be extremely memory-intensive as it needs to load all columns for 
the rows being merged. Vertical Compaction is an optimized algorithm that 
processes columns in smaller, independent groups. This dramatically reduces the 
peak memory usage (by up to 90%) and increases the speed of compaction, making 
updates and maintenance on wide tables far more efficient and stable.16 

○​ Segment Compaction: To prevent load jobs from failing with a "too many segments" 
error due to high-frequency writes or low-cardinality data, this feature can merge 
small segment files as they are being generated during the load process itself. This 
ensures that the base data remains healthy and improves the performance of 
subsequent queries on the newly loaded data.16 

○​ Single Replica Compaction: In a standard multi-replica setup, each replica would 
independently perform compaction, consuming CPU and I/O resources on each 
node. To optimize this, the Single Replica Compaction strategy designates one 
replica to perform the compaction work. Once complete, the other replicas simply 
download the already compacted files. This approach saves N-1 times the 
computational resources, where N is the number of replicas, significantly reducing 
the background load on the cluster.16 

 

5.3 Concurrency, Consistency, and Transactions 
 

Doris provides strong guarantees around data consistency and manages concurrent 
operations to ensure system stability and predictable behavior. 

●​ Transactionality and Atomicity: Every data import job in Doris, regardless of the 
method used, is treated as a single atomic transaction. This ensures that all data within a 
given load batch is either successfully committed and made visible, or the entire batch is 
rolled back in case of failure. There is no risk of partial data writes.52 

●​ Multi-Version Concurrency Control (MVCC): Doris uses an MVCC mechanism to 



handle concurrent reads and writes. Each committed transaction is assigned a unique, 
monotonically increasing version number. When a query is executed, it is given a specific 
version number to read. This allows the query to see a consistent snapshot of the data as 
of that version, without being affected by concurrent write operations. Similarly, writers 
do not block readers, enabling high concurrency for mixed workloads.54 

●​ Consistency Model: 
○​ Write Consistency: For data durability, Doris relies on a multi-replica architecture. 

By default, it employs a majority write (quorum) strategy. For a table with three 
replicas, a write transaction is considered successful and is committed only after at 
least two of the three replicas have successfully written the data. The remaining 
replica is then updated asynchronously in the background. This model provides a 
robust balance between data reliability and write latency.13 

○​ Data Updates: In the Unique Key model, MVCC versioning is used to resolve update 
conflicts. When multiple updates for the same primary key occur, the data from the 
transaction with the highest version number prevails. To handle cases where data 
may arrive out of order from parallel sources, users can define a sequence column in 
their table. Doris will then use the value in this column as a tie-breaker to determine 
the correct update order, ensuring that older data does not overwrite newer data.12 

●​ Concurrency Control: Doris provides mechanisms to manage both query and write 
concurrency to prevent system overload. 
○​ Query Concurrency: This is managed through Workload Groups. Administrators 

can define groups with specific limits on max_concurrency (the number of queries 
running at once), max_queue_size (how many queries can wait), and queue_timeout. 
When the concurrency limit is reached, new queries are queued or rejected, ensuring 
the system remains stable under heavy load.55 

○​ Write Concurrency: High-frequency, small-batch writes (e.g., from streaming 
sources) can create significant overhead for the FE, which has to manage a 
transaction for each write. The Group Commit mechanism addresses this by 
batching multiple small, independent write requests on the server-side into a single, 
larger transaction. This dramatically reduces the load on the FE and limits the rapid 
proliferation of small file versions on the BEs, improving overall system throughput 
and stability.56 The combination of advanced compaction algorithms and Group 
Commit is what makes real-time, high-frequency updates a viable and performant 
feature in Doris, distinguishing it from more traditional, append-only OLAP systems. 

The following table provides a clear framework for users to select the appropriate data 
loading method by outlining the characteristics, use cases, and operational model of each. 

Table 5.1: Comparison of Primary Data Ingestion Methods 

Feature Stream Load Broker Load Routine Load Insert Into 



Mechanism Push-based 
(Client pushes 
data to BE) 

Pull-based (BE 
pulls data from 
remote source) 

Pull-based (FE 
manages 
continuous pull 
from Kafka) 

SQL-based 
(Executed 
within the 
Doris cluster) 

Synchronicity Synchronous 
(Immediate 
success/fail 
response) 

Asynchronous 
(Job status 
checked via 
SHOW LOAD) 

Asynchronous 
(Persistent job, 
status checked 
via SHOW 
ROUTINE 
LOAD) 

Synchronous 
(Immediate 
success/fail 
response) 

Typical Data 
Source 

Local files, 
application 
data streams 
via HTTP 

HDFS, S3, and 
other object 
stores 

Apache Kafka 
topics 

Other Doris 
tables, results 
of a SELECT 
query, or literal 
VALUES 

Recommende
d Data 
Volume 

Small to 
medium 
batches (MBs 
to a few GBs) 
per request 

Large batches 
(tens to 
hundreds of 
GBs) per job 

Continuous 
micro-batches 
(KBs to MBs) 

Small for 
VALUES, 
variable for 
SELECT 
(depends on 
query result 
size) 

Key Use Case Real-time 
streaming 
ingestion from 
applications; 
loading local 
files. 

Large-scale, 
offline batch 
ETL from data 
lakes or object 
storage. 

Building 
robust, 
continuous, 
real-time 
streaming 
pipelines from 
Kafka. 

Internal data 
transformation 
(ETL); loading 
from external 
tables; small 
ad-hoc inserts. 

 

Section 6: Performance Acceleration and Advanced 
Features 



 

Beyond its core architecture, Apache Doris incorporates a suite of advanced features 
designed specifically to accelerate query performance and reduce computational overhead. 
These mechanisms, including materialized views, a multi-layered indexing strategy, and 
intelligent caching, work in concert to deliver the sub-second response times required for 
modern analytical applications. 

 

6.1 Materialized Views: Pre-computation for Speed 
 

A materialized view (MV) is a powerful optimization technique that pre-computes and stores 
the result set of a query, allowing subsequent queries to access the pre-calculated data 
instead of re-computing it from the base tables. This trade of storage space for query speed 
is a cornerstone of performance tuning in data warehousing.58 

●​ Core Concept: When a user submits a query, the Doris optimizer can automatically and 
transparently rewrite it to use a suitable materialized view, even if the query references 
the base tables directly. This process is seamless to the end-user, who continues to 
query the original tables but experiences significantly faster response times.2 Doris 
supports two distinct types of materialized views, each representing a different trade-off 
between data freshness and computational complexity. 

●​ Synchronous Materialized Views: 
○​ Mechanism: Also known historically as a Rollup, a synchronous MV is updated in 

real-time, within the same transaction as the base table. When new data is loaded, 
the corresponding aggregations in the MV are calculated and committed 
simultaneously with the base table data. This ensures strong consistency between 
the MV and its source.59 

○​ Limitations: This real-time consistency comes with constraints. Synchronous MVs 
can only be defined on a single table and cannot contain complex operations like 
joins. They are essentially pre-aggregated summaries of a single table. Furthermore, 
because they add computational overhead to every write operation, having too many 
synchronous MVs on a single table can slow down data ingestion performance.58 

●​ Asynchronous Materialized Views: 
○​ Mechanism: Asynchronous MVs decouple the refresh process from the data 

ingestion pipeline. They are updated based on a defined schedule (e.g., every hour), 
a manual trigger, or upon a commit to the base table. This results in eventual 
consistency, where the data in the MV may lag slightly behind the base table.61 

○​ Capabilities: The flexibility gained from decoupling is immense. Asynchronous MVs 
are far more powerful, supporting definitions that include multi-table joins, complex 
expressions, and even queries on external data sources in a Lakehouse architecture. 



They can also be queried directly as if they were regular tables, making them useful 
for creating intermediate data marts or summary tables in an ETL workflow.59 

The existence of these two MV types is a deliberate design choice, offering architects a clear 
trade-off. Synchronous MVs are ideal for real-time dashboards and reporting on a single fact 
table where data freshness is paramount. Asynchronous MVs are better suited for building 
complex, cross-domain data marts or accelerating heavy analytical queries where a small 
amount of data latency is acceptable in exchange for the ability to pre-compute complex joins 
and transformations. 

 

6.2 Multi-Layered Indexing Strategy 
 

Doris employs a hierarchical indexing strategy that combines several types of indexes to 
prune data at different granularities, from entire files down to individual data blocks. This 
"defense-in-depth" approach to I/O reduction is critical for achieving fast query performance 
by minimizing the amount of data that must be read from disk.63 

●​ Built-in Indexes (Smart Indexes): These indexes are created and maintained 
automatically by Doris without user intervention. 
○​ Sorted Compound Key (Prefix) Index: When a table is created, its data is physically 

sorted on disk according to the specified key columns (Duplicate, Unique, or 
Aggregate Key). Doris automatically creates a sparse index on the first 36 bytes of 
this sort key. This index stores an entry for every 1024 rows, pointing to the start of 
that data block. When a query includes a filter on the prefix of the sort key, this index 
allows the scanner to quickly seek to the relevant data blocks, bypassing the vast 
majority of the table's data.1 

○​ ZoneMap Index: Doris automatically creates a ZoneMap index for every column in 
every segment file. This index stores metadata for each data page, including the 
minimum and maximum values. When a query contains a predicate (e.g., WHERE 
sales > 500 AND sales < 1000), the engine first consults the ZoneMap. If the query's 
range does not overlap with a page's min/max range, that entire page can be skipped 
without being read from disk. This provides coarse-grained but effective data 
pruning for all columns.23 

●​ User-Created Secondary Indexes: For more targeted performance optimization, users 
can create secondary indexes on specific columns. 
○​ Inverted Index: This index creates a mapping from a value (or a token, in the case of 

text) to the list of row IDs that contain it. It is exceptionally powerful for accelerating 
full-text search queries (using MATCH) and high-selectivity equality or range filters 
on high-cardinality columns. It essentially allows for direct lookups of qualifying rows, 
avoiding a full table scan.1 



○​ Bloom Filter Index: A Bloom filter is a space-efficient, probabilistic data structure 
that can quickly determine if an element is definitely not in a set. Doris can create a 
Bloom filter for each data block on a specified column. When an equality query (= or 
IN) is executed, the engine checks the Bloom filter first. If the filter indicates the 
value is not present in the block, the block is skipped. This is highly effective for 
filtering on high-cardinality columns like user_id or order_id.1 

○​ Bitmap Index: Best suited for columns with low to medium cardinality (e.g., gender, 
country, city), a bitmap index creates a separate bitmap for each distinct value in the 
column. These bitmaps can be combined with extremely fast bitwise operations 
(AND, OR) to resolve complex, multi-column predicates efficiently.66 

 

6.3 Caching Mechanisms 
 

To reduce latency, especially when accessing remote data or re-executing common queries, 
Doris implements several layers of caching. 

●​ Metadata Cache: In a Data Lakehouse setup, repeatedly fetching metadata (schemas, 
partitions, file locations) from external sources like a Hive Metastore can be a significant 
performance bottleneck. Doris maintains a cache of this external metadata within the FE, 
with configurable expiration and refresh policies. This allows for millisecond-level 
metadata access for subsequent queries.12 

●​ Data Cache (Block Cache): This cache is essential for the compute-storage decoupled 
architecture. When a BE node reads a data block from a remote object store, it can cache 
that block on its fast local SSD. Subsequent queries that need the same data block can 
then read it from the local cache, avoiding the high latency of a network round trip to the 
remote storage. This mechanism effectively keeps "hot" data close to the compute 
resources.12 

●​ Query Cache (SQL Cache): Doris can cache the final result set of queries. If an identical 
SQL query is submitted again and the underlying data in the queried tables has not 
changed, Doris can serve the result directly from the cache, bypassing query planning 
and execution entirely. This provides the fastest possible response time for frequently 
executed, deterministic queries, such as those powering popular dashboard widgets.69 

The following table helps developers and DBAs understand which index to use for a given 
query pattern and data characteristic. 

Table 6.1: Overview of Indexing Mechanisms in Apache Doris 

Index Type Category Primary Supported Supported Key 



Use Case Data 
Cardinality 

Query 
Operators 

Trade-off 

Sorted 
Compound 
Key 

Built-in Acceleratin
g range 
scans and 
equality 
lookups on 
the prefix 
of the sort 
key. 

All =, IN, >, <, 
BETWEEN 
on key 
prefix 

Only one 
per table; 
effectivene
ss depends 
on query 
aligning 
with the 
sort order. 

ZoneMap 
Index 

Built-in Coarse-grai
ned data 
skipping for 
all columns 
based on 
min/max 
values. 

All =, IN, >, <, 
BETWEEN, 
IS NULL 

Less 
effective for 
non-selecti
ve queries 
or columns 
with wide 
value 
ranges. 

Inverted 
Index 

Secondary Full-text 
search and 
fast 
point/range 
queries on 
any column. 

High MATCH, =, 
IN, >, <, 
array_conta
ins 

Higher 
storage 
overhead 
and 
ingestion 
cost. 

Bloom 
Filter Index 

Secondary Acceleratin
g equality 
lookups on 
high-cardin
ality 
columns 
(e.g., IDs). 

High =, IN Probabilisti
c (small 
chance of 
false 
positives); 
not useful 
for range 
queries. 

Bitmap 
Index 

Secondary Acceleratin
g queries 
with 
multiple 

Low to 
Medium 

=, IN Inefficient 
for 
high-cardin
ality 



AND/OR 
conditions 
on 
low-cardina
lity 
columns. 

columns 
due to large 
bitmap size. 

 

Section 7: Comparative Architectural Analysis 
 

To fully appreciate the internal design of Apache Doris, it is instructive to compare it with 
other prominent systems in the analytical database landscape. This analysis focuses on 
architectural philosophies and key design trade-offs against ClickHouse, StarRocks, and Trino, 
revealing how Doris positions itself in the market. 

 

7.1 Doris vs. ClickHouse 
 

The comparison between Doris and ClickHouse highlights a fundamental difference in design 
philosophy: managed usability versus raw, specialized performance. 

●​ Architecture: Doris is built around a managed cluster architecture with its FE/BE model. 
The FE provides a centralized point of control, automating tasks like data balancing, 
replica repair, and cluster expansion, which simplifies operations significantly.71 
ClickHouse, while capable of running in a cluster, has a design more akin to a collection 
of powerful single nodes. Setting up a distributed ClickHouse cluster requires manual 
configuration of distributed tables and relies on an external coordination service like 
ZooKeeper or ClickHouse Keeper, placing a higher operational burden on the user.71 

●​ Data Updates: This is a key differentiator. Doris, with its Unique Key model, provides 
strongly consistent, synchronous update and delete operations. When an UPDATE 
command completes, the data is immediately consistent and visible to subsequent 
queries. This is critical for real-time analytics scenarios that require synchronization with 
transactional data.72 ClickHouse's update and delete operations (via​
ALTER TABLE... UPDATE/DELETE) are asynchronous mutations. The operation is queued 
and executed in the background, meaning there can be a delay before the changes are 
reflected in query results, leading to temporary data inconsistencies.71 

●​ Joins and SQL Compatibility: Doris was designed from the ground up as an MPP 



system with a sophisticated CBO capable of handling complex, large-scale multi-table 
joins, including distributed shuffle joins between large tables.71 ClickHouse is renowned 
for its world-class performance on single-table scans and queries on denormalized 
(wide) tables but has historically been less optimized for the kind of complex, ad-hoc 
joins common in BI tools.73 Furthermore, Doris prioritizes compatibility with the MySQL 
protocol and standard ANSI SQL, which lowers the learning curve and simplifies 
integration with the existing data ecosystem. ClickHouse uses its own powerful but 
distinct SQL dialect, which may require users to adapt their queries and tools.71 

 

7.2 Doris vs. StarRocks 
 

Doris and StarRocks share a common ancestry, as StarRocks was forked from an early version 
of Apache Doris in 2020.74 While they retain a similar foundational FE/BE architecture, both 
projects have undergone extensive, independent development and have diverged significantly 
in their focus and implementation. 

●​ Origins and Divergence: Since the fork, both codebases have been heavily rewritten.74 
This shared heritage means they have similar concepts (e.g., data models, load methods), 
but the underlying implementation of core components like the query optimizer and 
execution engine has evolved separately. 

●​ Strategic Focus: The two projects appear to be pursuing different strategic priorities. 
StarRocks has heavily marketed its capabilities as a high-performance query engine for 
data lakes, positioning itself as a direct competitor to and replacement for engines like 
Trino.74 While Apache Doris also possesses strong data lake query capabilities, its 
development roadmap has maintained a broader focus on being a​
unified OLAP database. This includes significant investment in features that enhance its 
role as a standalone data warehouse, such as advanced support for semi-structured 
data (JSON, VARIANT types), optimizations for high-concurrency point queries, and 
robust real-time data update mechanisms.74 

●​ Performance and Community: Both systems are highly performant, leveraging 
vectorized execution engines and cost-based optimizers. Publicly available benchmarks 
are often contentious and workload-dependent, with each project claiming performance 
leadership in different scenarios.74 The choice between them often comes down to 
specific feature maturity, community support, and alignment with an organization's 
primary use case (e.g., pure lakehouse query vs. a unified data warehouse). 

 

7.3 Doris vs. Trino (Presto) 



 

The comparison with Trino highlights the difference between a unified data warehouse and a 
federated query engine. 

●​ Architecture: This is the most fundamental distinction. Doris is an integrated system that 
combines both a storage engine and a query execution engine. It manages its own data 
in an optimized columnar format.69 Trino, in contrast, is a pure​
federated query engine. It does not have its own storage layer. Its purpose is to execute 
queries on data where it currently resides, whether in a data lake (Hive, Iceberg, Hudi), a 
NoSQL database (Cassandra), or a relational database (MySQL, PostgreSQL).69 

●​ Performance: 
○​ On External Data: When both are used as query engines on top of a data lake, Doris 

often demonstrates superior performance. This is attributed to its C++ 
implementation (versus Trino's Java), which allows for more direct memory 
management and CPU optimization, as well as more advanced caching mechanisms 
for both data and metadata, and the ability to use materialized views to accelerate 
queries on external tables.69 

○​ On Native Data: When data is ingested into Doris's own optimized storage format, 
the performance advantage becomes even more pronounced (often cited as 3-10x 
faster). This is because Doris can leverage its full suite of internal 
optimizations—columnar storage with compression, multi-layered indexing, data 
locality in the coupled model, and colocation strategies—which are not available to a 
storage-agnostic engine like Trino.69 

●​ Use Case and Philosophy: Trino's strength lies in its ability to provide a single SQL 
interface for ad-hoc, exploratory queries across a vast and heterogeneous data 
landscape without requiring data movement. Doris offers a more unified solution. It can 
perform federated queries like Trino, but it also provides a high-performance native 
storage layer. This allows organizations to simplify their data architecture by using a 
single system for both data warehousing and data lake querying, eliminating the 
complexity and cost of maintaining separate storage and query engine layers.69 

Ultimately, the competitive landscape reveals a clear "middle path" strategy for Doris. It does 
not aim to be the absolute fastest single-table engine, a title often claimed by ClickHouse, nor 
is it a pure, storage-agnostic query engine like Trino. Instead, Doris occupies a strategic 
middle ground, offering a balanced and unified platform. It provides better multi-table join 
performance, stronger data consistency, and simpler cluster management than ClickHouse, 
making it more suitable for general-purpose BI and enterprise analytics. Simultaneously, it 
delivers a more performant and integrated solution than Trino by tightly coupling storage and 
compute, providing a "one-stop shop" for a wide range of analytical needs. 

The following table provides a high-level strategic comparison for architects choosing a 
system based on core design principles rather than just feature lists. 



Table 7.1: Architectural Design Trade-offs: Doris vs. ClickHouse vs. Trino 

Architectural 
Aspect 

Apache Doris ClickHouse Trino (Presto) 

Core Paradigm Unified Data 
Warehouse: 
Integrates storage 
and compute for a 
comprehensive 
OLAP solution. 

High-Performance 
Columnar 
Database: 
Optimized for 
extreme speed on 
single-table 
analytical queries. 

Federated Query 
Engine: Decouples 
query execution 
from storage, 
querying data 
in-place. 

Storage Model Native, optimized 
columnar storage. 
Also supports 
querying external 
data lakes (Hive, 
Iceberg). 

Native, highly 
optimized columnar 
storage via 
MergeTree engine 
family. 

None. Relies 
entirely on external 
storage systems via 
connectors. 

Data Update 
Model 

Synchronous & 
Consistent: Unique 
Key model provides 
immediate, strongly 
consistent 
updates/deletes. 

Asynchronous & 
Eventual: 
Mutations are 
processed in the 
background, 
leading to eventual 
consistency. 

Read-Only (by 
default): Update 
capabilities depend 
entirely on the 
underlying storage 
system's connector. 

Cluster 
Management 

Managed & 
Automated: FE 
nodes handle 
cluster 
coordination, 
auto-balancing, 
and fault recovery. 

Manual & Flexible: 
Requires external 
coordination (e.g., 
ZooKeeper) and 
manual setup of 
distributed tables. 

Coordinator/Work
er Model: Simple 
to scale workers, 
but no built-in data 
management or 
balancing. 

Primary Strength Balance and 
Versatility: Strong 
performance on 
complex joins, 
real-time updates, 

Raw Speed: 
Unmatched 
performance on 
large, denormalized 
single-table scans 

Federation and 
Flexibility: Ability 
to query anything, 
anywhere with a 
single SQL 



and ease of use. and aggregations. interface. 

 

Section 8: Conclusion and Future Outlook 
 

The internal architecture of Apache Doris is a testament to a pragmatic and evolving design 
philosophy, meticulously engineered to balance extreme performance with operational 
simplicity and data consistency. This analysis has deconstructed the key components that 
enable Doris to fulfill its role as a high-performance, real-time analytical data warehouse. The 
synergy between its core architectural tenets—the straightforward two-process FE/BE model, 
the flexible coupled and decoupled deployment options, a highly optimized columnar storage 
engine, and a modern query execution pipeline—creates a system that is both powerful and 
accessible. 

The simplified FE/BE architecture significantly lowers the barrier to entry and reduces the 
total cost of ownership, a deliberate choice that contrasts sharply with the complexity of many 
distributed data systems. The evolution to include a compute-storage decoupled model is a 
strategic pivot that aligns Doris with the demands of cloud-native environments, offering the 
elasticity, workload isolation, and cost-efficiency required by modern enterprises. Internally, 
the storage engine's columnar format, augmented by a hybrid row-store option and a 
multi-layered indexing strategy, provides a versatile foundation for a wide spectrum of 
analytical and point-query workloads. This physical storage is intelligently managed through 
logical data models that allow architects to tailor data handling to specific business 
requirements for updates, aggregation, or raw data retention. 

At the heart of its performance lies the query processing pipeline. The journey from SQL to 
result set is guided by a sophisticated, multi-stage optimizer that combines deterministic 
rule-based transformations with advanced cost-based planning. The resulting plan is brought 
to life by a state-of-the-art execution engine that leverages the CPU-level efficiency of 
vectorization and the high-concurrency, resource-efficient scheduling of the Pipeline model. 
This combination ensures that Doris can handle both high-throughput complex analysis and 
high-concurrency point queries effectively. 

Ultimately, the design of Apache Doris reflects a deep understanding of the practical needs of 
enterprise data analytics. It prioritizes strong data consistency through transactional ingestion 
and synchronous update models, offers a familiar MySQL-compatible interface to foster 
broad ecosystem integration, and provides a unified platform that can simplify complex data 
architectures by serving as both a data warehouse and a data lake query engine. 

Looking ahead, the project's trajectory indicates a continued commitment to these core 



principles. The ongoing development of the next-generation Nereids query optimizer 
promises even smarter and more robust query planning.10 Further enhancements to its Data 
Lakehouse capabilities, including deeper integration with formats like Apache Iceberg and 
Apache Hudi and support for incremental materialized views on external data, will solidify its 
position as a central hub for unified analytics.68 As Doris continues to evolve, its focus on 
delivering a balanced, powerful, and user-friendly analytical database ensures it will remain a 
compelling choice for organizations seeking to derive real-time insights from their data. 
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