

Deconstructing Dynamo: A Foundational
Guide to Building a Highly Available
Key-Value Store

Part I: Foundational Principles and Core Design
Philosophy

Section 1: Introduction - A Paradigm Shift in Database Design

The history of database systems is marked by a continuous evolution to meet the
ever-expanding demands of applications. For decades, the relational database management
system (RDBMS) was the undisputed standard, offering a powerful model for structured data
and, most critically, strong consistency guarantees through ACID (Atomicity, Consistency,
Isolation, Durability) transactions.1 However, the explosive growth of internet-scale services,
such as those at Amazon, exposed the operational limits of this traditional model. At a
massive scale, with infrastructure spanning tens of thousands of servers across global
datacenters, even the slightest outage carries significant financial consequences and erodes
customer trust.3

Experience within large-scale e-commerce platforms demonstrated that data stores providing
rigid ACID guarantees often struggled with availability, a reality widely acknowledged in both
industry and academia.1 For many core services, such as managing a customer's shopping
cart, the most critical requirement is not absolute, instantaneous consistency across the
entire system, but rather an "always-on" experience.1 A customer must always be able to add
an item to their cart, even in the face of server failures or network disruptions. This
operational imperative led to a fundamental re-evaluation of database architecture,
culminating in systems like Amazon's Dynamo.

Dynamo represents a paradigm shift—a purpose-built solution for a class of applications

where high availability is the primary concern. To achieve this, it makes a deliberate and
calculated trade-off: it sacrifices strong consistency under certain failure scenarios.1 This
report serves as a foundational guide to the principles and architecture of Dynamo, designed
for the engineer seeking to understand and build such a system from first principles.

The CAP Theorem as a Guiding Light

The design philosophy of Dynamo is deeply rooted in the theoretical framework of the CAP
theorem. The theorem states that in a distributed data store, it is impossible to simultaneously
provide more than two of the following three guarantees:

1.​ Consistency (C): Every read receives the most recent write or an error. In a strongly
consistent system, all nodes see the same data at the same time.

2.​ Availability (A): Every request receives a (non-error) response, without the guarantee
that it contains the most recent write.

3.​ Partition Tolerance (P): The system continues to operate despite an arbitrary number of
messages being dropped (or delayed) by the network between nodes.

In a large-scale distributed system like Amazon's, network partitions are not a hypothetical
possibility but a certainty.3 Given that partition tolerance is a requirement, not a choice,
system designers are forced to make a direct trade-off between consistency and availability.
Dynamo's architecture represents a deliberate choice to prioritize availability and partition
tolerance (an AP system), relaxing the guarantee of strong consistency.4 This choice for
"eventual consistency" allows the system to remain operational for both reads and writes even
when nodes cannot communicate with each other, with the assurance that all replicas will
converge to the same state over time.6

Defining the Core Tenets

The pursuit of an "always-on" experience, guided by the CAP theorem, led to a set of core
design principles that permeate every aspect of Dynamo's architecture. These tenets are
essential for building a system that is not only resilient but also manageable at scale.

●​ Incremental Scalability: The system must be able to scale out one storage host (node)
at a time with minimal impact on operators and the system itself.3 This avoids the need
for costly, disruptive overhauls and allows the infrastructure to grow organically with
demand.

●​ Symmetry: Every node in the system has the same set of responsibilities as its peers.3

There are no special or master nodes, which simplifies system design, provisioning, and
maintenance. Any node can handle any client request for any key.

●​ Decentralization: As an extension of symmetry, the design favors peer-to-peer
techniques over centralized control.3 Centralized components introduce single points of
failure and potential performance bottlenecks. A decentralized approach enhances
robustness and resilience.

●​ Heterogeneity: The system must account for the reality that not all servers in a fleet are
created equal. It should be able to exploit the varying capabilities of the underlying
hardware, distributing work proportionally so that more powerful nodes handle a larger
share of the load.3

The "Always Writeable" Philosophy

A cornerstone of Dynamo's design is the "always writeable" philosophy, which dictates that a
write operation should rarely, if ever, be rejected.6 In a traditional database, if a network
partition prevents a master node from communicating with its replicas, a write request might
be blocked or rejected to prevent inconsistency. This prioritizes consistency at the expense of
availability.

Dynamo inverts this priority. It is engineered to accept writes even during network partitions
or server failures.9 This choice is the primary driver of its high availability but also introduces
its greatest complexity: the possibility of conflicting updates. If two clients write to the same
key on different sides of a network partition, a traditional database would have to reject one
write. Dynamo accepts both. This creates two divergent, conflicting versions of the same
object. The database itself cannot know how to merge these versions without understanding
the data's meaning. For example, merging two shopping cart versions is a business logic
problem (e.g., taking the union of all items), not a generic database problem.1

This leads to the most profound design decision in Dynamo: the inversion of responsibility for
data consistency from the database to the application. Traditional databases guarantee
consistency internally. Dynamo, by exposing potentially conflicting versions of an object to the
client, forces the application developer to resolve these semantic conflicts.1 The database's
job is reduced to detecting that a conflict has occurred and presenting all conflicting versions
to the application for resolution. This is a fundamental trade-off: the system gains immense
availability and architectural simplicity at the cost of increased application complexity.

The System Interface

To support this model, Dynamo exposes a deceptively simple key-value API. It is not a
relational database and provides no support for joins or complex schemas; it targets
applications that primarily need to store and retrieve relatively small binary objects (blobs),
typically less than 1 MB, via a primary key.1 The two core operations are:

●​ get(key): This operation retrieves the object associated with the provided key. In the
absence of conflicts, it returns a single object. However, if concurrent, divergent updates
have occurred, it may return a list of conflicting object versions, each with its own
context.3

●​ put(key, context, object): This operation stores an object under a given key. The context is
an opaque piece of metadata that the client obtains from a previous get operation. It
contains system-level information, most notably the object's version history. The client
should not interpret the context but must pass it back on subsequent writes. This context
is what allows the system to maintain the causal relationship between different versions
of an object.3

This simple interface, combined with the underlying architectural principles, creates a
powerful building block for a specific but critical class of highly available internet services.

Part II: The Architectural Blueprint - A
Component-by-Component Deep Dive

Section 2: Data Partitioning with Consistent Hashing and Virtual
Nodes

A fundamental challenge in any distributed database is determining how to spread a
potentially massive key space across a dynamic cluster of server nodes. The chosen
partitioning strategy must support incremental scalability, allowing nodes to be added or
removed without causing a catastrophic reshuffling of data. A naive approach, such as using a
simple modulo hash (hash(key) % N, where N is the number of nodes), is brittle; changing N
requires nearly all keys to be remapped, leading to massive data movement and system
instability.11 Dynamo solves this problem with an elegant and robust technique known as
consistent hashing.

Consistent Hashing Explained

Consistent hashing provides a method for distributing keys that is largely independent of the
number of nodes in the system, thereby minimizing data migration when the cluster size
changes.13 The concept is best understood through the abstraction of a "hash ring."

1.​ The Hash Ring: The output range of a hash function (e.g., MD5, which produces a
128-bit value) is treated as a fixed circular space, or a ring.6 The largest hash value wraps
around to the smallest, forming a continuous loop.

2.​ Mapping Nodes and Keys: Both server nodes and data keys are mapped onto this same
ring. A node's position is determined by hashing its identifier (such as its IP address or a
randomly assigned ID).12 Similarly, a data item's position is determined by hashing its
key.15

3.​ Assigning Responsibility: The core rule of consistent hashing is that a key is stored on
the first node encountered when walking clockwise from the key's position on the ring.6
This means each node is responsible for the arc of the ring between its own position and
the position of its counter-clockwise predecessor.

The primary advantage of this scheme is its impact on scalability. When a new node is added
to the ring, it takes responsibility for a portion of the key space previously owned by its
clockwise successor. Only the keys within that specific arc need to be moved. Likewise, when
a node is removed, its keys are transferred to its clockwise successor. In both cases, the vast
majority of keys on other nodes remain unaffected, enabling smooth, incremental scaling.12

The Problem with Basic Consistent Hashing

While elegant in theory, the basic form of consistent hashing has two significant practical
drawbacks that would make it unsuitable for a production system like Dynamo:

1.​ Non-uniform Data Distribution: The random assignment of a single position to each
node on the ring can lead to an uneven distribution of the key space. Some nodes may
end up with very large partitions, becoming performance bottlenecks or "hot spots,"
while others are left with small partitions and remain underutilized.6

2.​ Lack of Heterogeneity Awareness: The basic algorithm treats all nodes as equal. It has
no mechanism to account for the fact that some servers may have significantly more
processing power or storage capacity than others.6

Virtual Nodes as the Solution

Dynamo addresses these limitations with a critical refinement: the use of "virtual nodes".2
Instead of mapping a physical server to a single point on the ring, each server is assigned a
large number of virtual nodes (also known as tokens). Each of these virtual nodes is given a
random position on the ring.15

This introduction of a layer of indirection between physical nodes and the partitions on the
ring elegantly solves both of the aforementioned problems.

●​ Improved Load Balancing: With a sufficiently large number of virtual nodes per physical
server, the law of large numbers ensures that the key space is divided much more
uniformly. When a physical node fails or is removed, its many virtual nodes are scattered
around the ring. The load they were carrying is therefore not transferred to a single
successor but is instead dispersed evenly across many different physical nodes in the
cluster, preventing any one node from being overwhelmed.7

●​ Support for Heterogeneity: Virtual nodes provide a simple mechanism to handle
servers with varying capacities. A more powerful machine can be assigned a
proportionally larger number of virtual nodes, thereby taking on a larger share of the data
and the request load in a natural and balanced way.6

This use of virtual nodes effectively decouples the logical partitioning of the key space from
the physical topology of the cluster. This abstraction is fundamental to Dynamo's operational
flexibility. In a basic consistent hashing scheme, adding a new node requires a complex
"stealing" of a contiguous block of keys from a single successor node, which can be a
resource-intensive operation.3 With virtual nodes, a new node is assigned a set of tokens, and
it receives smaller amounts of data from many different nodes across the ring—whichever
nodes were previously responsible for the ranges now owned by the new virtual nodes. This
spreads the burden of bootstrapping across the cluster, leading to faster rebalancing with
less performance impact on any single node.3

Implementation Focus

To implement this partitioning scheme, a data structure is needed to efficiently map a key's
hash to its corresponding coordinator node. A common and effective approach is to use a
sorted map or a balanced binary search tree (like a Red-Black tree).12 The keys in this map are

the integer hash values of the virtual nodes, and the values are the identifiers of the physical
nodes they belong to.

To find the coordinator node for a given data key, the following steps are taken:

1.​ Calculate the hash of the data key.
2.​ Search the sorted map for the smallest virtual node hash that is greater than or equal to

the data key's hash.
3.​ If the search reaches the end of the map (meaning the key's hash is larger than any

virtual node's hash), it wraps around to the first virtual node in the map, due to the
circular nature of the ring.

4.​ The physical node associated with the identified virtual node is the coordinator for that
key.

This lookup is efficient, typically having a time complexity of O(logV), where V is the total
number of virtual nodes in the cluster.

Section 3: Replication, Quorums, and Tunable Consistency

Once the system determines the coordinator node for a given key through consistent hashing,
the next critical task is to ensure the data is stored durably and remains available even if that
node fails. Dynamo achieves this through replication, copying each data item to multiple
nodes in the cluster. Furthermore, it provides a powerful mechanism for application
developers to control the trade-off between consistency and performance through a
configurable quorum system.

The Preference List

To achieve high availability and durability, every data item is replicated on N hosts, where N is
a configurable parameter, typically set to 3.2 The set of nodes responsible for storing replicas
for a particular key is known as its "preference list".3

The preference list is constructed deterministically using the consistent hashing ring. The
coordinator node for a key (the first node found by walking clockwise from the key's hash) is
the first node in its preference list. The list is then populated by continuing to walk clockwise
around the ring and selecting the next N-1 nodes. A crucial detail, especially when using
virtual nodes, is that the preference list must contain N unique physical nodes.8 This ensures
that replicas are spread across different physical machines, providing true redundancy

against hardware failures. If the clockwise walk encounters a virtual node belonging to a
physical machine already in the list, that virtual node is skipped, and the walk continues.

Quorum Consistency (R and W)

Dynamo employs a quorum-like system, inspired by those used in protocols like Paxos, to
manage consistency among replicas. This system is governed by two key parameters, R and
W, which are configured by the application per operation.4

●​ W (Write Quorum): This is the minimum number of replicas that must acknowledge the
successful receipt and storage of a write operation before the coordinator node reports
success to the client.

●​ R (Read Quorum): This is the minimum number of replicas that must respond to a read
request before the coordinator returns a result to the client.

The relationship between N, R, and W determines the consistency guarantees of the system.
The fundamental principle is that if R + W > N, the system provides strong consistency
guarantees, similar to a read-your-writes model. This inequality ensures that the set of nodes
participating in a read operation (the read quorum) and the set of nodes participating in the
most recent write operation (the write quorum) are guaranteed to have at least one node in
common. This overlap ensures that a read will always see the most recently written value.3

Tuning for Trade-offs

The ability to configure N, R, and W on a per-application or even per-operation basis is one of
Dynamo's most powerful features. It allows developers to make explicit, fine-grained
trade-offs between availability, latency, and consistency to match the specific needs of their
use case.3

●​ High Consistency Configuration (R + W > N): A common configuration is N=3, R=2, and
W=2. Here, 2 + 2 > 3, so strong consistency is maintained. A write must be confirmed by
two of the three replicas, and a read must receive responses from two of the three. This
configuration can tolerate the failure of one node for both reads and writes while still
guaranteeing that a read will see the latest successful write. However, it requires a
majority of replicas to be available and responsive, which can increase latency compared
to more relaxed settings.

●​ Optimized for Fast, Available Writes (W=1): Setting W=1 allows a write to be
considered successful as soon as a single replica has persisted it. This configuration,

often paired with R=N (e.g., N=3, R=3, W=1), provides the highest possible write
availability and the lowest write latency. It is ideal for applications that need to ingest
data at a high rate, such as logging or event tracking systems, where losing a write is less
critical than blocking the write operation. Reads, however, become slower and less
available as they must contact all N replicas.

●​ Optimized for Fast, Available Reads (R=1): Conversely, setting R=1 allows a read to
return as soon as it gets a response from any single replica. This provides the fastest
possible read latency. This is often paired with W=N (e.g., N=3, R=1, W=3) to ensure that
writes are durable. This setup is well-suited for read-heavy workloads like product
catalogs or content delivery systems where updates are infrequent but reads are
numerous and must be fast.

●​ Highest Availability, Weakest Consistency (R + W <= N): A configuration like N=3, R=1,
W=1 sacrifices the strong consistency guarantee of the quorum overlap. While this
provides the fastest possible latency and highest availability for both reads and writes (as
only one node needs to respond for either operation), it increases the probability of
reading stale data. This is suitable for applications where eventual consistency is
perfectly acceptable, such as social media feeds or "likes" counters.

The following table summarizes these common configurations and their associated trade-offs,
providing a practical guide for system configuration.

Configurati
on (N,R,W)

R+W > N? Optimized
For

Read
Characteris
tics

Write
Characteris
tics

Common
Use Case

(3, 2, 2) Yes Strong
Consistenc
y

Slower,
needs 2/3
nodes

Slower,
needs 2/3
nodes

Catalogs,
user
profiles
(read-your-
writes)

(3, 1, 3) Yes Fast,
Consistent
Reads

Fastest,
needs 1/3
node

Slowest,
needs 3/3
nodes

Read-heavy
systems
with
infrequent
updates

(3, 3, 1) Yes Fast,
Available
Writes

Slowest,
needs 3/3
nodes

Fastest,
needs 1/3
node

High-volum
e data
ingestion
(e.g.,

logging)

(3, 1, 1) No Highest
Availability

Fastest,
needs 1/3
node

Fastest,
needs 1/3
node

Systems
where stale
data is
acceptable

Section 4: Managing Concurrency with Vector Clocks

The combination of a leaderless, "always writeable" architecture and asynchronous
replication inevitably leads to a complex problem: how to manage concurrent updates to the
same data item. In a system without a single, authoritative leader to serialize writes, a network
partition can allow two different clients to update the same key on two different sets of
replicas. When the partition heals, the system is left with two distinct, conflicting versions of
the data.3 While traditional databases would use locks or leader election to prevent this
conflict, doing so would sacrifice the very availability Dynamo is designed to provide.

Dynamo's solution is not to prevent conflicts, but to detect them and delegate their resolution.
The mechanism it uses for this detection is the vector clock, a powerful tool for tracking
causality in distributed systems.

Vector Clocks Explained

A simple timestamp is insufficient for ordering events in a distributed system due to the
problem of clock skew—different machines' clocks can drift, making it impossible to rely on
them for a globally consistent ordering.20 Vector clocks solve this by tracking causal history
rather than physical time.4

A vector clock is a list of (node, counter) pairs that is associated with a specific version of a
data object.4 For a system with

N nodes, the vector would have N counters. The rules for managing vector clocks are as
follows:

1.​ Initialization: When an object is first created, its vector clock is initialized, for instance,
by the creating node Sx to ``.

2.​ Update Rule: When a node Sy handles an update to an object, it performs two actions
on the object's vector clock:
○​ It increments its own counter in the vector.
○​ It ensures that the resulting vector clock contains the causal history from the version

it is updating.
3.​ Comparison Rule: The causal relationship between two versions of an object, V1 and V2,

can be determined by comparing their respective vector clocks, VC1 and VC2:
○​ V1 is an ancestor of V2 (V1 causally precedes V2): This is true if and only if every

counter in VC1 is less than or equal to the corresponding counter in VC2, and at least
one counter in VC1 is strictly less than its counterpart in VC2. In this case, V2
subsumes V1, and the system can safely discard V1.4

○​ V1 and V2 are in conflict (concurrent siblings): This occurs if VC1 is not an
ancestor of VC2, and VC2 is not an ancestor of VC1. This means some counters in
VC1 are greater than those in VC2, while some counters in VC2 are greater than those
in VC1. This indicates that the two versions evolved on parallel, causally independent
branches of history, and a conflict has occurred.21

This mechanism of embedding causal history directly into the data itself is a cornerstone of
Dynamo's decentralized design. It allows any node to deterministically reason about the order
of events and detect conflicts without needing to communicate with a central coordinator. The
history is self-contained within the object's metadata, a critical feature for a symmetric,
peer-to-peer architecture.

Vector Clocks in Action: The get and put Lifecycle

Vector clocks are integrated directly into Dynamo's get and put operations, facilitated by the
context object.

●​ When a client performs a get(key) operation, the coordinator node requests all versions
of the object from the nodes in the key's preference list (or at least from an R quorum). It
then uses the vector clock comparison rule to determine the causal relationships
between the versions it receives. If one version is a clear descendant of all others, the
coordinator returns only that single, authoritative version to the client, along with its
context (which contains the vector clock). If it finds two or more versions that are in
conflict (i.e., they are concurrent siblings), it returns a list of all conflicting objects, each
with its own context.7

●​ When a client wishes to update an object, it must perform a put(key, context, object)
operation, passing back the context it received from a previous get. When the
coordinator for the put receives this request, it uses the vector clock within the provided
context to determine the new version's place in the causal history. It increments its own

counter and merges this with the client-provided clock to create the new vector clock for
the new version of the object. This new version is then written to a W quorum of replicas.

Application-Side Conflict Resolution

This process places the final, critical step of conflict resolution squarely on the application.
When a get operation returns multiple conflicting versions, the database has fulfilled its duty
by detecting the conflict. It is now up to the application to reconcile these versions based on
its own business logic.1

For example, if an application managing a shopping cart receives two conflicting versions, its
reconciliation logic might be to take the union of the items in both carts. After merging the
data, the application would then perform a put with the new, resolved version. The context for
this put would be constructed by merging the vector clocks of the conflicting versions it just
resolved and then incrementing the current coordinator's counter. This act of writing back a
resolved version collapses the divergent history back into a single, causally consistent
timeline.

Section 5: Engineering for Resilience: Failure Handling and Detection

In a large-scale distributed system, components are constantly failing. Servers crash,
networks partition, and disks fail. A resilient system must treat failure not as an exceptional
event, but as a standard mode of operation.5 Dynamo is engineered with a multi-layered
defense strategy to remain highly available and to ensure that, despite transient failures and
inconsistencies, all data replicas eventually converge to the same state. This strategy relies on
a hierarchy of mechanisms, each designed to handle a different class of failure on a different
timescale.

Sub-section 5.1: Membership and Failure Detection with the Gossip Protocol

Before nodes can cooperate to replicate data or handle failures, they must first be aware of
each other's existence and health status. In a decentralized system without a central registry,
this information must be discovered and maintained in a peer-to-peer fashion. Dynamo uses a

gossip protocol for this purpose.5

A gossip protocol, also known as an epidemic protocol, works by having each node
periodically exchange state information with a small, randomly selected set of other nodes.23
This information includes the node's own state and its knowledge of other nodes' states (e.g.,
their health, load, and the virtual node tokens they own). Over time, this information
propagates through the entire cluster much like a rumor spreads through a social network.
This process allows all nodes to build and maintain an eventually consistent view of the
cluster's membership and health without overwhelming the network with all-to-all
communication.25

Failure detection is also made more robust through gossip. If a node A repeatedly fails to
communicate with node B, it does not immediately declare B as dead. Instead, it begins
gossiping to its peers that B is suspected to be unreachable. Other nodes will then also
attempt to verify B's status. A node is only marked as failed after a consensus emerges among
its peers, making the detection mechanism resilient to transient network glitches that might
only affect a single node's perspective.3

Sub-section 5.2: Handling Temporary Failures with Sloppy Quorum and Hinted
Handoff

The strict quorum model (R + W > N) can compromise availability. For a common configuration
like (N=3, W=2), if one of the top three nodes in a key's preference list is temporarily down, a
write operation would be forced to fail. To uphold the "always writeable" principle, Dynamo
employs two complementary techniques: sloppy quorum and hinted handoff.

●​ Sloppy Quorum: This technique relaxes the requirement that reads and writes must be
fulfilled by the top N nodes in the preference list. Instead, during a failure, the operation
is sent to the first N healthy nodes encountered when walking the consistent hashing
ring, which may not be the same nodes as in the original preference list.4 This allows the
quorum (​
R or W) to be met even when some of the primary replica nodes are unavailable, thus
preserving availability.

●​ Hinted Handoff: When a healthy node accepts a write on behalf of a failed node, it
doesn't treat the data as its own. It stores the data locally but includes metadata, or a
"hint," indicating that the data's rightful owner is the failed node.4 The temporary node
periodically checks if the failed node has recovered. Once the original node is back
online, the temporary node "hands off" the hinted replica to it. After the transfer is
complete, the temporary node can delete its local copy. This mechanism ensures that
writes are not lost during transient failures and that the system's replication factor is

eventually restored.

Sub-section 5.3: Handling Permanent Divergence with Anti-Entropy

While hinted handoff is effective for short-term, transient failures, it is not a foolproof
mechanism for ensuring long-term consistency. For example, a temporary node holding a
hinted replica could itself suffer a permanent failure before it has a chance to hand off the
data. Over time, replicas can diverge due to these or other unforeseen events. To act as a final
backstop and guarantee eventual consistency, Dynamo implements a background
anti-entropy protocol.2

The core challenge of anti-entropy is to efficiently compare replicas that may contain
terabytes of data and synchronize any differences with minimal network overhead. A naive
approach of sending the entire dataset for comparison would be prohibitively expensive.
Dynamo solves this with Merkle trees.

●​ Merkle Trees: A Merkle tree, or hash tree, is a tree in which every leaf node is a hash of
an individual data block (in Dynamo's case, a key-value pair), and every non-leaf node is
a hash of its children.7 The root of the tree represents a hash of the entire dataset.

●​ Efficient Comparison: To synchronize, two nodes responsible for the same range of
keys only need to exchange the root hash of their respective Merkle trees.2

○​ If the root hashes match, the nodes can conclude that their replicas are identical,
and no further communication is needed.

○​ If the root hashes differ, it indicates an inconsistency. The nodes then exchange the
hashes of the children of the root. They can recursively traverse down the tree,
comparing hashes at each level, only exploring the branches where the hashes do
not match.10

○​ This process allows the nodes to quickly and efficiently pinpoint the exact keys that
are different, requiring them to transfer only the divergent data, not the entire replica
set. This dramatically reduces the network bandwidth required for synchronization.10

This layered approach to resilience is a key takeaway in robust distributed systems design.
Fast, optimistic protocols like hinted handoff are used for common, transient failures, while
slower, more comprehensive protocols like the anti-entropy mechanism provide the ultimate
guarantee of correctness for exceptional cases.

Part III: Implementation and Practical Considerations

Section 6: The Anatomy of a Dynamo Node

The preceding sections have described the high-level distributed algorithms that govern how
a cluster of Dynamo nodes interact. This section delves into the internal architecture of a
single node, exploring how it processes client requests and manages the physical storage of
its data. The design choices made within a single node are just as critical to the system's
overall performance and scalability as the distributed protocols.

Sub-section 6.1: Request Routing and Coordination

A client application needs to direct its get and put requests to a node that can coordinate the
operation. In Dynamo's symmetric, leaderless architecture, any node can act as a coordinator.
The coordinator's role is to identify the nodes in the key's preference list and manage the
quorum-based read or write operation on behalf of the client. There are two primary
strategies for routing a client's request to an appropriate coordinator.3

1.​ Server-Side Coordination via a Load Balancer: In this model, the client is unaware of
the partitioning logic of the Dynamo cluster. It sends all its requests to a generic load
balancer, which then forwards the request to any available node in the cluster, chosen
based on load or round-robin policies.31 The node that receives the request from the load
balancer becomes the coordinator for that specific operation. It uses its local copy of the
cluster membership state to determine the preference list for the requested key and then
proxies the request to the correct replica nodes. This approach is simple for the client
but introduces an extra network hop, which can increase latency. It also places the load
balancer and the initial receiving node on the critical path.3

2.​ Client-Side Coordination via a Partition-Aware Library: A more performant approach
involves making the client "smarter." In this model, the client application integrates a
library that is aware of the cluster's partitioning scheme.3 This library periodically
communicates with the Dynamo cluster (e.g., via the gossip protocol) to maintain a local,
up-to-date copy of the cluster membership and the mapping of virtual nodes to physical
nodes. When the application needs to perform an operation, the client library itself can
hash the key, determine the preference list, and send the request directly to one of the
top​
N nodes in that list, which then acts as the coordinator.33 This eliminates the extra
network hop of the load balancer model, resulting in significantly lower latency. The

trade-off is increased complexity on the client side, as the library must now manage
cluster state.

Sub-section 6.2: The Local Persistence Engine: Log-Structured Merge-Trees
(LSM-trees)

Each node in the Dynamo cluster is responsible for storing a subset of the total data. The
choice of the local storage engine—the software component that manages data on the
node's physical disks—has a profound impact on performance. Dynamo's design favors a
pluggable storage engine, allowing different engines to be used based on the application's
needs.35 However, for the write-intensive workloads that Dynamo is designed for, a
Log-Structured Merge-Tree (LSM-tree) is an exceptionally good fit.36

The core principle of an LSM-tree is to optimize for high write throughput by converting the
small, random write operations typical of database workloads into large, sequential writes to
disk. This is highly efficient for both traditional spinning hard disk drives (HDDs), which suffer
from high seek time penalties for random access, and modern solid-state drives (SSDs), which
have finite write endurance and perform better with sequential writes.38

The architecture of an LSM-tree can be understood by its distinct write and read paths.

●​ The Write Path:
1.​ Write-Ahead Log (WAL): To ensure durability, an incoming write operation is first

appended to a sequential log file on disk, the Write-Ahead Log. If the node crashes,
this log can be replayed to recover any writes that were not yet fully persisted.36

2.​ Memtable: After being written to the WAL, the key-value pair is inserted into an
in-memory data structure, typically a sorted one like a skip list or a balanced binary
tree, known as the Memtable.37 The write operation can be acknowledged as
successful to the client at this point, making writes extremely fast as they only involve
an in-memory operation and a sequential log append.

3.​ SSTable Flush: The Memtable has a fixed size. When it becomes full, it is "frozen" (a
new Memtable is created for subsequent writes), and the contents of the full
Memtable are flushed to disk as a new file. This file is called a Sorted String Table
(SSTable) because the key-value pairs within it are sorted. This flush operation is a
large, sequential write, which is highly efficient.37 SSTables are immutable; once
written, they are never modified.

●​ The Read Path: To find the value for a given key, the system must search for the most
recent version, which could be in one of several places. The search proceeds in a specific
order:
1.​ First, the active Memtable is checked, as it contains the most recent writes.

2.​ If the key is not found, the search proceeds to the frozen Memtables that are in the
process of being flushed.

3.​ Finally, the on-disk SSTables are checked, starting from the newest and proceeding
to the oldest. Since an update or deletion of a key is simply a new entry in a newer
SSTable, the first version found is guaranteed to be the most recent.​
To avoid the costly process of checking every single SSTable on disk for every read,
LSM-trees employ Bloom filters. A Bloom filter is a probabilistic data structure that
can quickly and definitively say "this key is not in this SSTable." It can have false
positives (it might say a key is present when it's not), but it never has false negatives.
This allows the read path to skip scanning the vast majority of SSTables, dramatically
improving read performance.37

●​ Compaction and Write Amplification: Over time, the write process creates a large
number of SSTables on disk. To manage this and to reclaim space from deleted or
updated records, a background process called compaction runs periodically.36
Compaction reads several SSTables, merges them together, discards overwritten or
deleted data, and writes out a new, larger, and more compact SSTable.

This merging process is the source of a critical metric for storage engines called write
amplification: the ratio of the total bytes written to the physical storage device versus the
bytes written by the application.42 For every 1 byte of application data written, the compaction
process might rewrite that byte multiple times as it gets merged into progressively larger
SSTables. High write amplification is a major consideration for the endurance and lifespan of
SSDs.

The design of the LSM-tree storage engine within a single node exhibits a fascinating parallel
to the design of the Dynamo distributed system as a whole. Both systems prioritize high write
performance by employing an append-only, eventually consistent model. At the macro level,
the distributed system accepts writes quickly on any replica and defers the work of making all
replicas consistent to background processes like hinted handoff and anti-entropy. At the
micro level, the LSM-tree on a single node accepts writes quickly into an in-memory Memtable
and defers the work of organizing that data on disk to the background compaction process.
This fractal-like architectural pattern demonstrates that the fundamental principles of
deferring and batching organizational work are effective at both the single-node and
multi-node scales.

Section 7: A Phased Implementation Roadmap

Building a complete, production-ready distributed database is a monumental undertaking.
However, for the purpose of learning, the project can be broken down into a series of
manageable phases. Each phase builds upon the last, introducing a new layer of distributed

systems concepts and functionality. This roadmap provides a structured approach to
constructing a Dynamo-style key-value store from the ground up.45

Phase 1: The Single-Node Key-Value Store (The Core Engine)

The foundation of any distributed database is a robust single-node storage engine. The goal
of this phase is to build a persistent, high-performance key-value store that runs on a single
machine. This component will later be replicated and distributed across the cluster.

●​ Core Components to Build:
1.​ API Definition: Implement the basic get(key) and put(key, value) API endpoints. At

this stage, the value is a simple byte array.
2.​ In-Memory Memtable: Create an in-memory data structure to handle incoming

writes. A simple hash map or a more advanced sorted structure like a skip list can be
used.

3.​ Write-Ahead Log (WAL): Implement a simple append-only log file. Before a put
operation is added to the Memtable, it must first be written to the WAL to ensure
durability in case of a crash.

4.​ SSTable Flushing: Implement the logic to flush the Memtable to a sorted file
(SSTable) on disk when it reaches a configured size threshold.

5.​ Read Logic: Implement the get operation to first check the Memtable for the key. If
not found, it must then scan the on-disk SSTables (from newest to oldest) to find the
key.

●​ Further Work (Advanced Single-Node Features):
○​ Compaction: Implement a background process to merge smaller SSTables into

larger ones to reclaim space and improve read performance.
○​ Bloom Filters: Add a Bloom filter to each SSTable to allow the read path to quickly

skip files that do not contain the requested key.
○​ Implementation tutorials for LSM-trees can be found in sources.40

Phase 2: Distribution and Data Placement (Going Distributed)

With a working single-node engine, the next step is to distribute the data across a cluster of
these nodes.

●​ Core Components to Build:
1.​ Networking Layer: Establish a mechanism for nodes to communicate with each

other. This can be done using a framework like gRPC or by building on top of raw TCP

sockets.
2.​ Consistent Hashing with Virtual Nodes: Implement the consistent hashing ring.

This involves creating a data structure (like a sorted map) to store the virtual node
hashes and their corresponding physical node identifiers.

3.​ Request Routing: Implement the logic that, given a key, can use the consistent
hashing ring to identify the correct coordinator node for that key.

4.​ Request Proxying: Modify the node's API handler. If a node receives a request for a
key it does not coordinate, it should look up the correct coordinator and forward
(proxy) the request to that node.

○​ Implementation tutorials for consistent hashing can be found in sources.52

Phase 3: Replication and Durability (Making it Robust)

This phase focuses on making the distributed store fault-tolerant by replicating data.

●​ Core Components to Build:
1.​ Preference List: Implement the logic to determine the N-node preference list for any

given key by walking the consistent hashing ring.
2.​ Replication Logic: Modify the put logic on the coordinator node. Instead of just

writing locally, it must now send the write request to the other N-1 nodes in the key's
preference list.

3.​ Quorum Implementation: Implement the configurable (N, R, W) quorum system. For
a put, the coordinator must wait for W acknowledgements from the replica nodes
before returning success to the client. For a get, it must wait for R responses,
potentially perform read repair, and then return the result.

○​ Implementation tutorials for data replication can be found in sources.54

Phase 4: Concurrency Control (Handling Simultaneous Writes)

Now, the system must be enhanced to correctly handle the concurrent updates that are
possible in a leaderless architecture.

●​ Core Components to Build:
1.​ Vector Clock Data Structure: Implement a data structure to represent a vector

clock (e.g., a map of node IDs to integer counters).
2.​ Data Model Modification: Change the on-disk and in-memory data format. Instead

of storing just a value for a key, the system must now store a list of (value,
vector_clock) pairs.

3.​ API Modification: Update the get and put API to handle the opaque context object,
which will carry the vector clock information between the client and the server.

4.​ Conflict Detection Logic: Implement the vector clock comparison logic. The get
operation must now use this logic to identify conflicting versions and return them all
to the client. The put operation must use the context to create the vector clock for
the new version.

○​ Implementation tutorials for vector clocks can be found in sources.57

Phase 5: High Availability and Self-Healing (The "Always-On" System)

The final phase involves implementing the background processes that make the system truly
resilient and self-healing.

●​ Core Components to Build:
1.​ Gossip Protocol: Implement a gossip protocol for cluster membership and failure

detection. Each node should periodically exchange its view of the cluster state with a
few random peers.

2.​ Sloppy Quorum and Hinted Handoff: Modify the write logic to implement sloppy
quorums. If a node in the preference list is marked as "down" (based on information
from the gossip protocol), the coordinator must find the next healthy node on the
ring to send the replica to, along with a "hint" about its intended owner.

3.​ Anti-Entropy with Merkle Trees: Implement a background anti-entropy process.
Nodes should periodically build Merkle trees for the key ranges they own and
compare root hashes with their peers to detect and repair inconsistencies.

○​ Tutorials for these concepts can be found in sources 23 for gossip, and 30 for
anti-entropy.

Part IV: From Theory to Practice - The Evolution to
DynamoDB

Section 8: Lessons from a Decade of Production Use

The original Dynamo paper, published in 2007, was a seminal work that provided a blueprint

for a new class of highly available databases and heavily influenced the NoSQL movement.63
However, the internal Dynamo system it described was not a final product but a set of
principles and techniques. The journey from that internal system to the globally available,
multi-tenant cloud service known as Amazon DynamoDB involved significant architectural
evolution, driven by years of operational experience and a deeper understanding of customer
needs in a managed service context.64 Understanding this evolution provides crucial context
for the practical application of Dynamo's principles.

Dynamo vs. DynamoDB: Key Architectural Differences

While DynamoDB is "built on the principles of Dynamo," it is not a direct implementation.
Several key architectural decisions were made to adapt the original design for a fully
managed, public cloud service.63

●​ Replication Model: The most fundamental architectural shift is the move from the purely
leaderless, peer-to-peer replication model of Dynamo to a single-leader replication
model per partition in DynamoDB.65 In DynamoDB, the key space is divided into
partitions, and within each partition, one of the three replicas is elected as the leader.
This leader is responsible for coordinating all write operations for that partition. This
change represents a pragmatic retreat from pure decentralization. While Dynamo's
leaderless model is elegant and maximizes write availability, it makes providing strong
consistency and multi-key transactions exceptionally difficult. By establishing a leader for
each partition, DynamoDB creates a single point of serialization for all writes within that
partition's key range. This makes it much simpler to offer stronger consistency
guarantees and transactional capabilities, features that are highly demanded by a broad
range of applications. This introduces the complexity of leader election (often managed
by a consensus algorithm like Paxos), but it significantly simplifies the developer
experience.66

●​ Consistency Model: The original Dynamo was designed primarily as an eventually
consistent system, with strong consistency being achievable only through careful
configuration of quorums (R+W > N). DynamoDB, by contrast, offers strongly consistent
reads as a first-class, configurable option on a per-request basis.67 This is a direct
benefit of the leader-per-partition architecture; a strongly consistent read is simply
routed to the leader node for that partition, which is guaranteed to have the most
up-to-date state.

●​ Transactional Support: The leader-based model also paved the way for the introduction
of ACID transactions in DynamoDB.70 DynamoDB transactions allow for atomic,
all-or-nothing operations across multiple items, even spanning different tables.
Implementing this level of transactional integrity in a truly leaderless system is a
notoriously difficult distributed computing problem. The partition leader provides the

necessary coordination point to make such transactions feasible in a production
environment.

User Needs in a Managed Service

The evolution to DynamoDB was also heavily influenced by observing how developers actually
used database systems in a cloud environment.

●​ The Importance of Predictable Performance: The DynamoDB team learned that for
many customers, predictable performance, especially at the tail end of the latency
distribution (the 99.9th percentile), was more important than raw peak throughput.8 In a
multi-tenant cloud service, where one customer's workload can potentially impact
another's (the "noisy neighbor" problem), providing consistent, predictable latency is a
critical feature that builds trust and simplifies application development.64

●​ The Value of "Fully Managed": A revealing lesson came from observing internal Amazon
teams. Despite the availability of the powerful Dynamo system, many teams opted to use
Amazon SimpleDB, an earlier, less capable, but fully managed NoSQL service.64 This
demonstrated that developers would often trade raw performance and configurability for
operational simplicity. The immense burden of provisioning, scaling, patching, securing,
and backing up a distributed database was something most teams wanted to offload.
This insight was central to DynamoDB's design as a fully managed service that automates
these complex operational tasks.73

Advanced Features as a Path for Further Learning

The modern DynamoDB service includes a host of advanced features that build upon the
foundational principles of Dynamo, offering avenues for further study in distributed systems.

●​ Global Tables: This feature extends the DynamoDB architecture to a multi-region,
multi-active configuration. It allows for the creation of replica tables in different AWS
regions around the world, with data automatically replicated between them.75 This
provides low-latency data access for globally distributed users and serves as a robust
disaster recovery solution.

●​ Adaptive Capacity: The original Dynamo paper discussed handling heterogeneity by
assigning more virtual nodes to more powerful servers. DynamoDB takes this concept
much further with adaptive capacity. The service automatically monitors the traffic to
individual partitions and can dynamically respond to "hot partitions" by temporarily
boosting their throughput capacity or even splitting a hot partition into two to better

distribute the load.78 This is a sophisticated, automated operational feature that goes far
beyond the static configuration described in the original paper.

In conclusion, the journey from Dynamo to DynamoDB illustrates a key principle of systems
engineering: the "best" architecture is often a pragmatic hybrid of multiple pure models. The
final design of DynamoDB tempers the elegant, pure decentralization of the original Dynamo
with a limited form of leadership at the partition level. This compromise was necessary to
deliver the features—strong consistency, transactions, and predictable performance—that a
broad base of real-world applications requires, all while retaining the core Dynamo principles
of incremental scalability and high availability in a fully managed cloud service.

Works cited

1.​ Dynamo: Amazon's Highly Available Key-value Store - All Things Distributed,
accessed August 15, 2025,
https://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf

2.​ Dynamo: Amazon's highly available key-value store, accessed August 15, 2025,
https://pbg.cs.illinois.edu/courses/cs598fa10/readings/dynamo.pdf

3.​ Dynamo: Amazon's highly available key-value store, accessed August 15, 2025,
https://www.amazon.science/publications/dynamo-amazons-highly-available-key
-value-store

4.​ Dynamo: Amazon's Highly Available Key Value Store, accessed August 15, 2025,
https://courses.grainger.illinois.edu/cs525/sp2010/Dynamo_paper_CS525.pdf

5.​ (PDF) Dynamo: Amazon's highly available key-value store - ResearchGate,
accessed August 15, 2025,
https://www.researchgate.net/publication/220910159_Dynamo_Amazon's_highly_
available_key-value_store

6.​ Dynamo: Amazon's Highly Available Key-‐Value Store - cs.princeton.edu,
accessed August 15, 2025,
https://www.cs.princeton.edu/courses/archive/fall15/cos518/studpres/dynamo.pdf

7.​ Dynamo: Amazon's Highly Available Key-value Store - andrew.cmu.ed, accessed
August 15, 2025,
https://www.andrew.cmu.edu/course/14-736-s20/applications/ln/Dynamo.pdf

8.​ Dynamo: Amazon's Highly Available Key-value Store - Kexin Rong, accessed
August 15, 2025, https://kexinrong.github.io/fa24-cs6400/assets/papers/P7.pdf

9.​ Dynamo: Amazon's Highly Available Key-value Store - Computer Engineering
Group - University of Toronto, accessed August 15, 2025,
https://www.eecg.utoronto.ca/~ashvin/courses/ece1724/2024f/lectures/5-dynamo
.pdf

10.​Dynamo: Amazon's Highly Available Key-​value Store - ETH Zürich, accessed
August 15, 2025,
https://ethz.ch/content/dam/ethz/special-interest/infk/inst-cp/inst-cp-dam/educat
ion/courses/2021-spring/computing-platforms-seminar/Dynamo%20Presentation
%20Jie%20Lou%20Yanick%20Zengaffinen.pdf

11.​Consistent Hashing: Amazon DynamoDB (Part 1) | by Aditya Shete - Medium,

https://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf
https://pbg.cs.illinois.edu/courses/cs598fa10/readings/dynamo.pdf
https://www.amazon.science/publications/dynamo-amazons-highly-available-key-value-store
https://www.amazon.science/publications/dynamo-amazons-highly-available-key-value-store
https://courses.grainger.illinois.edu/cs525/sp2010/Dynamo_paper_CS525.pdf
https://www.researchgate.net/publication/220910159_Dynamo_Amazon's_highly_available_key-value_store
https://www.researchgate.net/publication/220910159_Dynamo_Amazon's_highly_available_key-value_store
https://www.cs.princeton.edu/courses/archive/fall15/cos518/studpres/dynamo.pdf
https://www.andrew.cmu.edu/course/14-736-s20/applications/ln/Dynamo.pdf
https://kexinrong.github.io/fa24-cs6400/assets/papers/P7.pdf
https://www.eecg.utoronto.ca/~ashvin/courses/ece1724/2024f/lectures/5-dynamo.pdf
https://www.eecg.utoronto.ca/~ashvin/courses/ece1724/2024f/lectures/5-dynamo.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/inst-cp/inst-cp-dam/education/courses/2021-spring/computing-platforms-seminar/Dynamo%20Presentation%20Jie%20Lou%20Yanick%20Zengaffinen.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/inst-cp/inst-cp-dam/education/courses/2021-spring/computing-platforms-seminar/Dynamo%20Presentation%20Jie%20Lou%20Yanick%20Zengaffinen.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/inst-cp/inst-cp-dam/education/courses/2021-spring/computing-platforms-seminar/Dynamo%20Presentation%20Jie%20Lou%20Yanick%20Zengaffinen.pdf

accessed August 15, 2025,
https://medium.com/@adityashete009/consistent-hashing-amazon-dynamodb-p
art-1-f5719aff7681

12.​Consistent hashing algorithm - High Scalability -, accessed August 15, 2025,
https://highscalability.com/consistent-hashing-algorithm/

13.​Consistent hashing explained - Ably, accessed August 15, 2025,
https://ably.com/blog/implementing-efficient-consistent-hashing

14.​Consistent Hashing Explained - System Design, accessed August 15, 2025,
https://systemdesign.one/consistent-hashing-explained/

15.​Design Consistent Hashing - ByteByteGo | Technical Interview Prep, accessed
August 15, 2025,
https://bytebytego.com/courses/system-design-interview/design-consistent-has
hing

16.​Consistent Hashing - CelerData, accessed August 15, 2025,
https://celerdata.com/glossary/consistent-hashing

17.​Consistent Hashing Deep Dive for System Design Interviews, accessed August 15,
2025,
https://www.hellointerview.com/learn/system-design/deep-dives/consistent-hashi
ng

18.​Understanding Consistent Hashing: A Robust Approach to Data ..., accessed
August 15, 2025,
https://medium.com/@anil.goyal0057/understanding-consistent-hashing-a-robus
t-approach-to-data-distribution-in-distributed-systems-0e4a0e770897

19.​Dynamo: Amazon's Highly Available Key-Value Store, accessed August 15, 2025,
https://courses.cs.vt.edu/cs5204/fall11-butt/lectures/Dynamo.pdf

20.​Vector Clocks and Conflicting Data - Design Gurus, accessed August 15, 2025,
https://www.designgurus.io/course-play/grokking-the-advanced-system-design-i
nterview/doc/vector-clocks-and-conflicting-data

21.​Mastering Vector Clocks in Distributed Systems - Number Analytics, accessed
August 15, 2025,
https://www.numberanalytics.com/blog/ultimate-guide-vector-clocks-distributed
-systems

22.​Vector Clocks. Like Lamport's Clock, Vector Clock is… | by Sruthi Sree Kumar | Big
Data Processing | Medium, accessed August 15, 2025,
https://medium.com/big-data-processing/vector-clocks-182007060193

23.​Gossip Protocol in Disrtibuted Systems - GeeksforGeeks, accessed August 15,
2025,
https://www.geeksforgeeks.org/system-design/gossip-protocol-in-disrtibuted-sy
stems/

24.​Gossip Protocol Explained - High Scalability, accessed August 15, 2025,
https://highscalability.com/gossip-protocol-explained/

25.​Gossip Protocol - System Design, accessed August 15, 2025,
https://systemdesign.one/gossip-protocol/

26.​What is Sloppy Quorum and Hinted handoff? - GeeksforGeeks, accessed August
15, 2025,

https://medium.com/@adityashete009/consistent-hashing-amazon-dynamodb-part-1-f5719aff7681
https://medium.com/@adityashete009/consistent-hashing-amazon-dynamodb-part-1-f5719aff7681
https://highscalability.com/consistent-hashing-algorithm/
https://ably.com/blog/implementing-efficient-consistent-hashing
https://systemdesign.one/consistent-hashing-explained/
https://bytebytego.com/courses/system-design-interview/design-consistent-hashing
https://bytebytego.com/courses/system-design-interview/design-consistent-hashing
https://celerdata.com/glossary/consistent-hashing
https://www.hellointerview.com/learn/system-design/deep-dives/consistent-hashing
https://www.hellointerview.com/learn/system-design/deep-dives/consistent-hashing
https://medium.com/@anil.goyal0057/understanding-consistent-hashing-a-robust-approach-to-data-distribution-in-distributed-systems-0e4a0e770897
https://medium.com/@anil.goyal0057/understanding-consistent-hashing-a-robust-approach-to-data-distribution-in-distributed-systems-0e4a0e770897
https://courses.cs.vt.edu/cs5204/fall11-butt/lectures/Dynamo.pdf
https://www.designgurus.io/course-play/grokking-the-advanced-system-design-interview/doc/vector-clocks-and-conflicting-data
https://www.designgurus.io/course-play/grokking-the-advanced-system-design-interview/doc/vector-clocks-and-conflicting-data
https://www.numberanalytics.com/blog/ultimate-guide-vector-clocks-distributed-systems
https://www.numberanalytics.com/blog/ultimate-guide-vector-clocks-distributed-systems
https://medium.com/big-data-processing/vector-clocks-182007060193
https://www.geeksforgeeks.org/system-design/gossip-protocol-in-disrtibuted-systems/
https://www.geeksforgeeks.org/system-design/gossip-protocol-in-disrtibuted-systems/
https://highscalability.com/gossip-protocol-explained/
https://systemdesign.one/gossip-protocol/

https://www.geeksforgeeks.org/system-design/what-is-sloppy-quorum-and-hint
ed-handoff/

27.​Can Sloppy Quorum guarantee strong read consistency? - Stack Overflow,
accessed August 15, 2025,
https://stackoverflow.com/questions/78518548/can-sloppy-quorum-guarantee-st
rong-read-consistency

28.​Hinted Handoff in System Design - Knowledge Bytes, accessed August 15, 2025,
https://www.knowledge-bytes.com/blog/hinted-handoff-in-system-design/

29.​18. Hinted Handoff - Design Gurus, accessed August 15, 2025,
https://www.designgurus.io/course-play/grokking-the-advanced-system-design-i
nterview/doc/18-hinted-handoff

30.​Understanding Anti-Entropy: Ensuring Data Consistency in Distributed Systems,
accessed August 15, 2025, https://systemdesignschool.io/blog/anti-entropy

31.​What is a distributed key-value store? - Milvus, accessed August 15, 2025,
https://milvus.io/ai-quick-reference/what-is-a-distributed-keyvalue-store

32.​System Design: The Key-value Store | by Kajal Glotra | Medium, accessed August
15, 2025,
https://medium.com/@glotrakajal01/system-design-the-key-value-store-94730f4
b67f1

33.​5 Workload Management with Dynamic Database Services - Oracle Help Center,
accessed August 15, 2025,
https://docs.oracle.com/en/database/oracle/oracle-database/19/racad/workload-
management-with-dynamic-database-services.html

34.​Load balancing client requests - Overview | RavenDB 7.1 Documentation,
accessed August 15, 2025,
https://ravendb.net/docs/article-page/7.1/csharp/client-api/configuration/load-bal
ance/overview

35.​DynamoDB-Compatible API - ScyllaDB, accessed August 15, 2025,
https://www.scylladb.com/alternator/

36.​How Cassandra and RocksDB Ingest Data So Fast: A Beginner's ..., accessed
August 15, 2025,
https://medium.com/@ghosalarjun/how-cassandra-and-rocksdb-ingest-data-so-
fast-a-beginners-guide-to-lsm-trees-ebd933975947

37.​Understanding the Log-Structured Merge (LSM) Tree: A Deep Dive into Efficient
Data Storage | by mandeep singh | Medium, accessed August 15, 2025,
https://medium.com/@mndpsngh21/understanding-the-log-structured-merge-ls
m-tree-a-deep-dive-into-efficient-data-storage-d7ef3a7562ba

38.​Log-structured merge-tree - Wikipedia, accessed August 15, 2025,
https://en.wikipedia.org/wiki/Log-structured_merge-tree

39.​What Is a Log-Structured Merge Tree (LSM Tree)? - Aerospike, accessed August
15, 2025, https://aerospike.com/blog/log-structured-merge-tree-explained/

40.​Implementing LSM Trees in Golang: A Comprehensive Guide - DZone, accessed
August 15, 2025, https://dzone.com/articles/implementing-lsm-trees-in-golang

41.​Building an LSM-Tree Storage Engine from Scratch - DEV Community, accessed
August 15, 2025,

https://www.geeksforgeeks.org/system-design/what-is-sloppy-quorum-and-hinted-handoff/
https://www.geeksforgeeks.org/system-design/what-is-sloppy-quorum-and-hinted-handoff/
https://stackoverflow.com/questions/78518548/can-sloppy-quorum-guarantee-strong-read-consistency
https://stackoverflow.com/questions/78518548/can-sloppy-quorum-guarantee-strong-read-consistency
https://www.knowledge-bytes.com/blog/hinted-handoff-in-system-design/
https://www.designgurus.io/course-play/grokking-the-advanced-system-design-interview/doc/18-hinted-handoff
https://www.designgurus.io/course-play/grokking-the-advanced-system-design-interview/doc/18-hinted-handoff
https://systemdesignschool.io/blog/anti-entropy
https://milvus.io/ai-quick-reference/what-is-a-distributed-keyvalue-store
https://medium.com/@glotrakajal01/system-design-the-key-value-store-94730f4b67f1
https://medium.com/@glotrakajal01/system-design-the-key-value-store-94730f4b67f1
https://docs.oracle.com/en/database/oracle/oracle-database/19/racad/workload-management-with-dynamic-database-services.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/racad/workload-management-with-dynamic-database-services.html
https://ravendb.net/docs/article-page/7.1/csharp/client-api/configuration/load-balance/overview
https://ravendb.net/docs/article-page/7.1/csharp/client-api/configuration/load-balance/overview
https://www.scylladb.com/alternator/
https://medium.com/@ghosalarjun/how-cassandra-and-rocksdb-ingest-data-so-fast-a-beginners-guide-to-lsm-trees-ebd933975947
https://medium.com/@ghosalarjun/how-cassandra-and-rocksdb-ingest-data-so-fast-a-beginners-guide-to-lsm-trees-ebd933975947
https://medium.com/@mndpsngh21/understanding-the-log-structured-merge-lsm-tree-a-deep-dive-into-efficient-data-storage-d7ef3a7562ba
https://medium.com/@mndpsngh21/understanding-the-log-structured-merge-lsm-tree-a-deep-dive-into-efficient-data-storage-d7ef3a7562ba
https://en.wikipedia.org/wiki/Log-structured_merge-tree
https://aerospike.com/blog/log-structured-merge-tree-explained/
https://dzone.com/articles/implementing-lsm-trees-in-golang

https://dev.to/justlorain/building-an-lsm-tree-storage-engine-from-scratch-3eo
m

42.​B-Tree vs LSM-Tree - TiKV, accessed August 15, 2025,
https://tikv.org/deep-dive/key-value-engine/b-tree-vs-lsm/

43.​Reduce the write amplification of B+ tree - ScaleFlux, accessed August 15, 2025,
https://scaleflux.com/blog/reduce-write-amplification-b-tree/

44.​Strategies to Minimize Write Amplification in Databases - Medium, accessed
August 15, 2025,
https://medium.com/@tusharmalhotra_81114/strategies-to-minimize-write-amplifi
cation-in-databases-e28a9939f34c

45.​Design A Key-value Store - ByteByteGo | Technical Interview Prep, accessed
August 15, 2025,
https://bytebytego.com/courses/system-design-interview/design-a-key-value-sto
re

46.​System Design: The Key-value Store - Educative.io, accessed August 15, 2025,
https://www.educative.io/courses/grokking-the-system-design-interview/system-
design-the-key-value-store

47.​Implementing a Distributed Key Value Store | by Saaketh - Medium, accessed
August 15, 2025,
https://medium.com/@sg7729/implementing-a-distributed-key-value-store-9632
5d606a7f

48.​How to construct the distributed database · ShardingSphere - Blog, accessed
August 15, 2025, https://shardingsphere.apache.org/blog/en/material/database/

49.​Distributed Database System - GeeksforGeeks, accessed August 15, 2025,
https://www.geeksforgeeks.org/dbms/distributed-database-system/

50.​eileen-code4fun/LSM-Tree: A simplified implementation for log structured merge
tree., accessed August 15, 2025, https://github.com/eileen-code4fun/LSM-Tree

51.​Implementing LSM Trees in Golang - Volito, accessed August 15, 2025,
https://volito.digital/implementing-lsm-trees-in-golang/

52.​Understanding Consistent Hashing and Implementation in GoLang | by Sumit
Sagar, accessed August 15, 2025,
https://medium.com/@sumit-s/understanding-consistent-hashing-and-implemen
tation-in-golang-a55777355e63

53.​Consistent Hashing - What It Is and How to Implement It, accessed August 15,
2025, https://arpitbhayani.me/blogs/consistent-hashing/

54.​Data Replication in distributed systems (Part-1) | by Sandeep Verma | Medium,
accessed August 15, 2025,
https://medium.com/@sandeep4.verma/data-replication-in-distributed-systems-
part-1-13f52410faa3

55.​Mastering Replication in Distributed Systems - Number Analytics, accessed
August 15, 2025,
https://www.numberanalytics.com/blog/ultimate-guide-replication-distributed-sy
stems

56.​Data Replication: Benefits, Types & Use Cases | Rivery, accessed August 15, 2025,
https://rivery.io/data-learning-center/data-replication/

https://dev.to/justlorain/building-an-lsm-tree-storage-engine-from-scratch-3eom
https://dev.to/justlorain/building-an-lsm-tree-storage-engine-from-scratch-3eom
https://tikv.org/deep-dive/key-value-engine/b-tree-vs-lsm/
https://scaleflux.com/blog/reduce-write-amplification-b-tree/
https://medium.com/@tusharmalhotra_81114/strategies-to-minimize-write-amplification-in-databases-e28a9939f34c
https://medium.com/@tusharmalhotra_81114/strategies-to-minimize-write-amplification-in-databases-e28a9939f34c
https://bytebytego.com/courses/system-design-interview/design-a-key-value-store
https://bytebytego.com/courses/system-design-interview/design-a-key-value-store
https://www.educative.io/courses/grokking-the-system-design-interview/system-design-the-key-value-store
https://www.educative.io/courses/grokking-the-system-design-interview/system-design-the-key-value-store
https://medium.com/@sg7729/implementing-a-distributed-key-value-store-96325d606a7f
https://medium.com/@sg7729/implementing-a-distributed-key-value-store-96325d606a7f
https://shardingsphere.apache.org/blog/en/material/database/
https://www.geeksforgeeks.org/dbms/distributed-database-system/
https://github.com/eileen-code4fun/LSM-Tree
https://volito.digital/implementing-lsm-trees-in-golang/
https://medium.com/@sumit-s/understanding-consistent-hashing-and-implementation-in-golang-a55777355e63
https://medium.com/@sumit-s/understanding-consistent-hashing-and-implementation-in-golang-a55777355e63
https://arpitbhayani.me/blogs/consistent-hashing/
https://medium.com/@sandeep4.verma/data-replication-in-distributed-systems-part-1-13f52410faa3
https://medium.com/@sandeep4.verma/data-replication-in-distributed-systems-part-1-13f52410faa3
https://www.numberanalytics.com/blog/ultimate-guide-replication-distributed-systems
https://www.numberanalytics.com/blog/ultimate-guide-replication-distributed-systems
https://rivery.io/data-learning-center/data-replication/

57.​LuizGuerra/Vector-Clock-Implementation - GitHub, accessed August 15, 2025,
https://github.com/LuizGuerra/Vector-Clock-Implementation

58.​Vector Clocks Demystified: A Vital Tool for Causality in Distributed ..., accessed
August 15, 2025,
https://medium.com/@sahukc0008/%EF%B8%8F-vector-clocks-demystified-a-vi
tal-tool-for-causality-in-distributed-syste-61ca4b7ac97c

59.​Vector Clocks in Distributed Systems - GeeksforGeeks, accessed August 15,
2025,
https://www.geeksforgeeks.org/computer-networks/vector-clocks-in-distributed
-systems/

60.​massenz/gossip: Fault-tolerant, Gossip Protocol-based failure detectors. -
GitHub, accessed August 15, 2025, https://github.com/massenz/gossip

61.​makgyver/gossipy: Python module for simulating gossip learning. - GitHub,
accessed August 15, 2025, https://github.com/makgyver/gossipy

62.​Anti-Entropy in Distributed Systems - GeeksforGeeks, accessed August 15, 2025,
https://www.geeksforgeeks.org/system-design/anti-entropy-in-distributed-syste
ms/

63.​Amazon's DynamoDB — 10 years later, accessed August 15, 2025,
https://www.amazon.science/latest-news/amazons-dynamodb-10-years-later

64.​Key Takeaways from the DynamoDB Paper | DeBrie Advisory, accessed August 15,
2025, https://alexdebrie.com/posts/dynamodb-paper/

65.​Dynamo (storage system) - Wikipedia, accessed August 15, 2025,
https://en.wikipedia.org/wiki/Dynamo_(storage_system)

66.​DynamoDB Internals - CRED Engineering, accessed August 15, 2025,
https://engineering.cred.club/dynamodb-internals-90c87184ab88

67.​Understanding DynamoDB Data Consistency - Common Issues Explained for
Better Performance - MoldStud, accessed August 15, 2025,
https://moldstud.com/articles/p-understanding-dynamodb-data-consistency-co
mmon-issues-explained-for-better-performance

68.​Amazon - DynamoDB Strong consistent reads, Are they latest and how? - Stack
Overflow, accessed August 15, 2025,
https://stackoverflow.com/questions/20870041/amazon-dynamodb-strong-consi
stent-reads-are-they-latest-and-how

69.​Can we set Strong Consistent Read on DynamoDB after creation - Codemia,
accessed August 15, 2025,
https://codemia.io/knowledge-hub/path/can_we_set_strong_consistent_read_on_
dynamodb_after_creation

70.​DynamoDB Transactions - KodeKloud Notes, accessed August 15, 2025,
https://notes.kodekloud.com/docs/AWS-Certified-Developer-Associate/Database
s/DynamoDB-Transactions

71.​Understanding Transactions in Amazon DynamoDB | by Benjamin Ajewole -
Medium, accessed August 15, 2025,
https://rexben.medium.com/understanding-transactions-in-amazon-dynamodb-
0696feda74b2

72.​DynamoDB Transactions: Use Cases and Examples | DeBrie Advisory, accessed

https://github.com/LuizGuerra/Vector-Clock-Implementation
https://medium.com/@sahukc0008/%EF%B8%8F-vector-clocks-demystified-a-vital-tool-for-causality-in-distributed-syste-61ca4b7ac97c
https://medium.com/@sahukc0008/%EF%B8%8F-vector-clocks-demystified-a-vital-tool-for-causality-in-distributed-syste-61ca4b7ac97c
https://www.geeksforgeeks.org/computer-networks/vector-clocks-in-distributed-systems/
https://www.geeksforgeeks.org/computer-networks/vector-clocks-in-distributed-systems/
https://github.com/massenz/gossip
https://github.com/makgyver/gossipy
https://www.geeksforgeeks.org/system-design/anti-entropy-in-distributed-systems/
https://www.geeksforgeeks.org/system-design/anti-entropy-in-distributed-systems/
https://www.amazon.science/latest-news/amazons-dynamodb-10-years-later
https://alexdebrie.com/posts/dynamodb-paper/
https://en.wikipedia.org/wiki/Dynamo_(storage_system)
https://engineering.cred.club/dynamodb-internals-90c87184ab88
https://moldstud.com/articles/p-understanding-dynamodb-data-consistency-common-issues-explained-for-better-performance
https://moldstud.com/articles/p-understanding-dynamodb-data-consistency-common-issues-explained-for-better-performance
https://stackoverflow.com/questions/20870041/amazon-dynamodb-strong-consistent-reads-are-they-latest-and-how
https://stackoverflow.com/questions/20870041/amazon-dynamodb-strong-consistent-reads-are-they-latest-and-how
https://codemia.io/knowledge-hub/path/can_we_set_strong_consistent_read_on_dynamodb_after_creation
https://codemia.io/knowledge-hub/path/can_we_set_strong_consistent_read_on_dynamodb_after_creation
https://notes.kodekloud.com/docs/AWS-Certified-Developer-Associate/Databases/DynamoDB-Transactions
https://notes.kodekloud.com/docs/AWS-Certified-Developer-Associate/Databases/DynamoDB-Transactions
https://rexben.medium.com/understanding-transactions-in-amazon-dynamodb-0696feda74b2
https://rexben.medium.com/understanding-transactions-in-amazon-dynamodb-0696feda74b2

August 15, 2025, https://alexdebrie.com/posts/dynamodb-transactions/
73.​A deep dive into Dynamo's architecture and scale - DEV Community, accessed

August 15, 2025,
https://dev.to/bro3886/a-deep-dive-into-dynamos-architecture-and-scale-51ma

74.​Deep Dive into AWS DynamoDB — Understanding the Core Features - Medium,
accessed August 15, 2025,
https://medium.com/@AlexanderObregon/deep-dive-into-aws-dynamodb-under
standing-the-core-features-dc39cb3e14f2

75.​Replicate DynamoDB Across Regions - Amazon DynamoDB Global ..., accessed
August 15, 2025, https://aws.amazon.com/dynamodb/global-tables/

76.​Multi-Region Data Replication with Amazon DynamoDB Global Tables - DEV
Community, accessed August 15, 2025,
https://dev.to/aws-builders/multi-region-data-replication-with-amazon-dynamod
b-global-tables-3ej0

77.​DynamoDB Global Tables | By Joud W. Awad - Medium, accessed August 15,
2025, https://medium.com/@joudwawad/dynamodb-global-tables-e62f2dce5f76

78.​Scaling DynamoDB: How partitions, hot keys, and split for heat ..., accessed
August 15, 2025,
https://aws.amazon.com/blogs/database/part-3-scaling-dynamodb-how-partitio
ns-hot-keys-and-split-for-heat-impact-performance/

79.​What is a DynamoDB Hot Partition? Definition & FAQs | ScyllaDB, accessed August
15, 2025, https://www.scylladb.com/glossary/dynamodb-hot-partition/

https://alexdebrie.com/posts/dynamodb-transactions/
https://dev.to/bro3886/a-deep-dive-into-dynamos-architecture-and-scale-51ma
https://medium.com/@AlexanderObregon/deep-dive-into-aws-dynamodb-understanding-the-core-features-dc39cb3e14f2
https://medium.com/@AlexanderObregon/deep-dive-into-aws-dynamodb-understanding-the-core-features-dc39cb3e14f2
https://aws.amazon.com/dynamodb/global-tables/
https://dev.to/aws-builders/multi-region-data-replication-with-amazon-dynamodb-global-tables-3ej0
https://dev.to/aws-builders/multi-region-data-replication-with-amazon-dynamodb-global-tables-3ej0
https://medium.com/@joudwawad/dynamodb-global-tables-e62f2dce5f76
https://aws.amazon.com/blogs/database/part-3-scaling-dynamodb-how-partitions-hot-keys-and-split-for-heat-impact-performance/
https://aws.amazon.com/blogs/database/part-3-scaling-dynamodb-how-partitions-hot-keys-and-split-for-heat-impact-performance/
https://www.scylladb.com/glossary/dynamodb-hot-partition/

	Deconstructing Dynamo: A Foundational Guide to Building a Highly Available Key-Value Store
	Part I: Foundational Principles and Core Design Philosophy
	Section 1: Introduction - A Paradigm Shift in Database Design
	The CAP Theorem as a Guiding Light
	Defining the Core Tenets
	The "Always Writeable" Philosophy
	The System Interface

	Part II: The Architectural Blueprint - A Component-by-Component Deep Dive
	Section 2: Data Partitioning with Consistent Hashing and Virtual Nodes
	Consistent Hashing Explained
	The Problem with Basic Consistent Hashing
	Virtual Nodes as the Solution
	Implementation Focus

	Section 3: Replication, Quorums, and Tunable Consistency
	The Preference List
	Quorum Consistency (R and W)
	Tuning for Trade-offs

	Section 4: Managing Concurrency with Vector Clocks
	Vector Clocks Explained
	Vector Clocks in Action: The get and put Lifecycle
	Application-Side Conflict Resolution

	Section 5: Engineering for Resilience: Failure Handling and Detection
	Sub-section 5.1: Membership and Failure Detection with the Gossip Protocol
	Sub-section 5.2: Handling Temporary Failures with Sloppy Quorum and Hinted Handoff
	Sub-section 5.3: Handling Permanent Divergence with Anti-Entropy

	Part III: Implementation and Practical Considerations
	Section 6: The Anatomy of a Dynamo Node
	Sub-section 6.1: Request Routing and Coordination
	Sub-section 6.2: The Local Persistence Engine: Log-Structured Merge-Trees (LSM-trees)

	Section 7: A Phased Implementation Roadmap
	Phase 1: The Single-Node Key-Value Store (The Core Engine)
	Phase 2: Distribution and Data Placement (Going Distributed)
	Phase 3: Replication and Durability (Making it Robust)
	Phase 4: Concurrency Control (Handling Simultaneous Writes)
	Phase 5: High Availability and Self-Healing (The "Always-On" System)

	Part IV: From Theory to Practice - The Evolution to DynamoDB
	Section 8: Lessons from a Decade of Production Use
	Dynamo vs. DynamoDB: Key Architectural Differences
	User Needs in a Managed Service
	Advanced Features as a Path for Further Learning
	Works cited

