
 

Deconstructing Dynamo: A Foundational 
Guide to Building a Highly Available 
Key-Value Store 
 

 

Part I: Foundational Principles and Core Design 
Philosophy 
 

 

Section 1: Introduction - A Paradigm Shift in Database Design 
 

The history of database systems is marked by a continuous evolution to meet the 
ever-expanding demands of applications. For decades, the relational database management 
system (RDBMS) was the undisputed standard, offering a powerful model for structured data 
and, most critically, strong consistency guarantees through ACID (Atomicity, Consistency, 
Isolation, Durability) transactions.1 However, the explosive growth of internet-scale services, 
such as those at Amazon, exposed the operational limits of this traditional model. At a 
massive scale, with infrastructure spanning tens of thousands of servers across global 
datacenters, even the slightest outage carries significant financial consequences and erodes 
customer trust.3 

Experience within large-scale e-commerce platforms demonstrated that data stores providing 
rigid ACID guarantees often struggled with availability, a reality widely acknowledged in both 
industry and academia.1 For many core services, such as managing a customer's shopping 
cart, the most critical requirement is not absolute, instantaneous consistency across the 
entire system, but rather an "always-on" experience.1 A customer must always be able to add 
an item to their cart, even in the face of server failures or network disruptions. This 
operational imperative led to a fundamental re-evaluation of database architecture, 
culminating in systems like Amazon's Dynamo. 

Dynamo represents a paradigm shift—a purpose-built solution for a class of applications 



where high availability is the primary concern. To achieve this, it makes a deliberate and 
calculated trade-off: it sacrifices strong consistency under certain failure scenarios.1 This 
report serves as a foundational guide to the principles and architecture of Dynamo, designed 
for the engineer seeking to understand and build such a system from first principles. 

 

The CAP Theorem as a Guiding Light 

 

The design philosophy of Dynamo is deeply rooted in the theoretical framework of the CAP 
theorem. The theorem states that in a distributed data store, it is impossible to simultaneously 
provide more than two of the following three guarantees: 

1.​ Consistency (C): Every read receives the most recent write or an error. In a strongly 
consistent system, all nodes see the same data at the same time. 

2.​ Availability (A): Every request receives a (non-error) response, without the guarantee 
that it contains the most recent write. 

3.​ Partition Tolerance (P): The system continues to operate despite an arbitrary number of 
messages being dropped (or delayed) by the network between nodes. 

In a large-scale distributed system like Amazon's, network partitions are not a hypothetical 
possibility but a certainty.3 Given that partition tolerance is a requirement, not a choice, 
system designers are forced to make a direct trade-off between consistency and availability. 
Dynamo's architecture represents a deliberate choice to prioritize availability and partition 
tolerance (an AP system), relaxing the guarantee of strong consistency.4 This choice for 
"eventual consistency" allows the system to remain operational for both reads and writes even 
when nodes cannot communicate with each other, with the assurance that all replicas will 
converge to the same state over time.6 

 

Defining the Core Tenets 

 

The pursuit of an "always-on" experience, guided by the CAP theorem, led to a set of core 
design principles that permeate every aspect of Dynamo's architecture. These tenets are 
essential for building a system that is not only resilient but also manageable at scale. 

●​ Incremental Scalability: The system must be able to scale out one storage host (node) 
at a time with minimal impact on operators and the system itself.3 This avoids the need 
for costly, disruptive overhauls and allows the infrastructure to grow organically with 
demand. 

●​ Symmetry: Every node in the system has the same set of responsibilities as its peers.3 



There are no special or master nodes, which simplifies system design, provisioning, and 
maintenance. Any node can handle any client request for any key. 

●​ Decentralization: As an extension of symmetry, the design favors peer-to-peer 
techniques over centralized control.3 Centralized components introduce single points of 
failure and potential performance bottlenecks. A decentralized approach enhances 
robustness and resilience. 

●​ Heterogeneity: The system must account for the reality that not all servers in a fleet are 
created equal. It should be able to exploit the varying capabilities of the underlying 
hardware, distributing work proportionally so that more powerful nodes handle a larger 
share of the load.3 

 

The "Always Writeable" Philosophy 

 

A cornerstone of Dynamo's design is the "always writeable" philosophy, which dictates that a 
write operation should rarely, if ever, be rejected.6 In a traditional database, if a network 
partition prevents a master node from communicating with its replicas, a write request might 
be blocked or rejected to prevent inconsistency. This prioritizes consistency at the expense of 
availability. 

Dynamo inverts this priority. It is engineered to accept writes even during network partitions 
or server failures.9 This choice is the primary driver of its high availability but also introduces 
its greatest complexity: the possibility of conflicting updates. If two clients write to the same 
key on different sides of a network partition, a traditional database would have to reject one 
write. Dynamo accepts both. This creates two divergent, conflicting versions of the same 
object. The database itself cannot know how to merge these versions without understanding 
the data's meaning. For example, merging two shopping cart versions is a business logic 
problem (e.g., taking the union of all items), not a generic database problem.1 

This leads to the most profound design decision in Dynamo: the inversion of responsibility for 
data consistency from the database to the application. Traditional databases guarantee 
consistency internally. Dynamo, by exposing potentially conflicting versions of an object to the 
client, forces the application developer to resolve these semantic conflicts.1 The database's 
job is reduced to detecting that a conflict has occurred and presenting all conflicting versions 
to the application for resolution. This is a fundamental trade-off: the system gains immense 
availability and architectural simplicity at the cost of increased application complexity. 

 

The System Interface 



 

To support this model, Dynamo exposes a deceptively simple key-value API. It is not a 
relational database and provides no support for joins or complex schemas; it targets 
applications that primarily need to store and retrieve relatively small binary objects (blobs), 
typically less than 1 MB, via a primary key.1 The two core operations are: 

●​ get(key): This operation retrieves the object associated with the provided key. In the 
absence of conflicts, it returns a single object. However, if concurrent, divergent updates 
have occurred, it may return a list of conflicting object versions, each with its own 
context.3 

●​ put(key, context, object): This operation stores an object under a given key. The context is 
an opaque piece of metadata that the client obtains from a previous get operation. It 
contains system-level information, most notably the object's version history. The client 
should not interpret the context but must pass it back on subsequent writes. This context 
is what allows the system to maintain the causal relationship between different versions 
of an object.3 

This simple interface, combined with the underlying architectural principles, creates a 
powerful building block for a specific but critical class of highly available internet services. 

 

Part II: The Architectural Blueprint - A 
Component-by-Component Deep Dive 
 

 

Section 2: Data Partitioning with Consistent Hashing and Virtual 
Nodes 
 

A fundamental challenge in any distributed database is determining how to spread a 
potentially massive key space across a dynamic cluster of server nodes. The chosen 
partitioning strategy must support incremental scalability, allowing nodes to be added or 
removed without causing a catastrophic reshuffling of data. A naive approach, such as using a 
simple modulo hash (hash(key) % N, where N is the number of nodes), is brittle; changing N 
requires nearly all keys to be remapped, leading to massive data movement and system 
instability.11 Dynamo solves this problem with an elegant and robust technique known as 
consistent hashing. 



 

Consistent Hashing Explained 

 

Consistent hashing provides a method for distributing keys that is largely independent of the 
number of nodes in the system, thereby minimizing data migration when the cluster size 
changes.13 The concept is best understood through the abstraction of a "hash ring." 

1.​ The Hash Ring: The output range of a hash function (e.g., MD5, which produces a 
128-bit value) is treated as a fixed circular space, or a ring.6 The largest hash value wraps 
around to the smallest, forming a continuous loop. 

2.​ Mapping Nodes and Keys: Both server nodes and data keys are mapped onto this same 
ring. A node's position is determined by hashing its identifier (such as its IP address or a 
randomly assigned ID).12 Similarly, a data item's position is determined by hashing its 
key.15 

3.​ Assigning Responsibility: The core rule of consistent hashing is that a key is stored on 
the first node encountered when walking clockwise from the key's position on the ring.6 
This means each node is responsible for the arc of the ring between its own position and 
the position of its counter-clockwise predecessor. 

The primary advantage of this scheme is its impact on scalability. When a new node is added 
to the ring, it takes responsibility for a portion of the key space previously owned by its 
clockwise successor. Only the keys within that specific arc need to be moved. Likewise, when 
a node is removed, its keys are transferred to its clockwise successor. In both cases, the vast 
majority of keys on other nodes remain unaffected, enabling smooth, incremental scaling.12 

 

The Problem with Basic Consistent Hashing 

 

While elegant in theory, the basic form of consistent hashing has two significant practical 
drawbacks that would make it unsuitable for a production system like Dynamo: 

1.​ Non-uniform Data Distribution: The random assignment of a single position to each 
node on the ring can lead to an uneven distribution of the key space. Some nodes may 
end up with very large partitions, becoming performance bottlenecks or "hot spots," 
while others are left with small partitions and remain underutilized.6 

2.​ Lack of Heterogeneity Awareness: The basic algorithm treats all nodes as equal. It has 
no mechanism to account for the fact that some servers may have significantly more 
processing power or storage capacity than others.6 



 

Virtual Nodes as the Solution 

 

Dynamo addresses these limitations with a critical refinement: the use of "virtual nodes".2 
Instead of mapping a physical server to a single point on the ring, each server is assigned a 
large number of virtual nodes (also known as tokens). Each of these virtual nodes is given a 
random position on the ring.15 

This introduction of a layer of indirection between physical nodes and the partitions on the 
ring elegantly solves both of the aforementioned problems. 

●​ Improved Load Balancing: With a sufficiently large number of virtual nodes per physical 
server, the law of large numbers ensures that the key space is divided much more 
uniformly. When a physical node fails or is removed, its many virtual nodes are scattered 
around the ring. The load they were carrying is therefore not transferred to a single 
successor but is instead dispersed evenly across many different physical nodes in the 
cluster, preventing any one node from being overwhelmed.7 

●​ Support for Heterogeneity: Virtual nodes provide a simple mechanism to handle 
servers with varying capacities. A more powerful machine can be assigned a 
proportionally larger number of virtual nodes, thereby taking on a larger share of the data 
and the request load in a natural and balanced way.6 

This use of virtual nodes effectively decouples the logical partitioning of the key space from 
the physical topology of the cluster. This abstraction is fundamental to Dynamo's operational 
flexibility. In a basic consistent hashing scheme, adding a new node requires a complex 
"stealing" of a contiguous block of keys from a single successor node, which can be a 
resource-intensive operation.3 With virtual nodes, a new node is assigned a set of tokens, and 
it receives smaller amounts of data from many different nodes across the ring—whichever 
nodes were previously responsible for the ranges now owned by the new virtual nodes. This 
spreads the burden of bootstrapping across the cluster, leading to faster rebalancing with 
less performance impact on any single node.3 

 

Implementation Focus 

 

To implement this partitioning scheme, a data structure is needed to efficiently map a key's 
hash to its corresponding coordinator node. A common and effective approach is to use a 
sorted map or a balanced binary search tree (like a Red-Black tree).12 The keys in this map are 



the integer hash values of the virtual nodes, and the values are the identifiers of the physical 
nodes they belong to. 

To find the coordinator node for a given data key, the following steps are taken: 

1.​ Calculate the hash of the data key. 
2.​ Search the sorted map for the smallest virtual node hash that is greater than or equal to 

the data key's hash. 
3.​ If the search reaches the end of the map (meaning the key's hash is larger than any 

virtual node's hash), it wraps around to the first virtual node in the map, due to the 
circular nature of the ring. 

4.​ The physical node associated with the identified virtual node is the coordinator for that 
key. 

This lookup is efficient, typically having a time complexity of O(logV), where V is the total 
number of virtual nodes in the cluster. 

 

Section 3: Replication, Quorums, and Tunable Consistency 
 

Once the system determines the coordinator node for a given key through consistent hashing, 
the next critical task is to ensure the data is stored durably and remains available even if that 
node fails. Dynamo achieves this through replication, copying each data item to multiple 
nodes in the cluster. Furthermore, it provides a powerful mechanism for application 
developers to control the trade-off between consistency and performance through a 
configurable quorum system. 

 

The Preference List 

 

To achieve high availability and durability, every data item is replicated on N hosts, where N is 
a configurable parameter, typically set to 3.2 The set of nodes responsible for storing replicas 
for a particular key is known as its "preference list".3 

The preference list is constructed deterministically using the consistent hashing ring. The 
coordinator node for a key (the first node found by walking clockwise from the key's hash) is 
the first node in its preference list. The list is then populated by continuing to walk clockwise 
around the ring and selecting the next N-1 nodes. A crucial detail, especially when using 
virtual nodes, is that the preference list must contain N unique physical nodes.8 This ensures 
that replicas are spread across different physical machines, providing true redundancy 



against hardware failures. If the clockwise walk encounters a virtual node belonging to a 
physical machine already in the list, that virtual node is skipped, and the walk continues. 

 

Quorum Consistency (R and W) 

 

Dynamo employs a quorum-like system, inspired by those used in protocols like Paxos, to 
manage consistency among replicas. This system is governed by two key parameters, R and 
W, which are configured by the application per operation.4 

●​ W (Write Quorum): This is the minimum number of replicas that must acknowledge the 
successful receipt and storage of a write operation before the coordinator node reports 
success to the client. 

●​ R (Read Quorum): This is the minimum number of replicas that must respond to a read 
request before the coordinator returns a result to the client. 

The relationship between N, R, and W determines the consistency guarantees of the system. 
The fundamental principle is that if R + W > N, the system provides strong consistency 
guarantees, similar to a read-your-writes model. This inequality ensures that the set of nodes 
participating in a read operation (the read quorum) and the set of nodes participating in the 
most recent write operation (the write quorum) are guaranteed to have at least one node in 
common. This overlap ensures that a read will always see the most recently written value.3 

 

Tuning for Trade-offs 

 

The ability to configure N, R, and W on a per-application or even per-operation basis is one of 
Dynamo's most powerful features. It allows developers to make explicit, fine-grained 
trade-offs between availability, latency, and consistency to match the specific needs of their 
use case.3 

●​ High Consistency Configuration (R + W > N): A common configuration is N=3, R=2, and 
W=2. Here, 2 + 2 > 3, so strong consistency is maintained. A write must be confirmed by 
two of the three replicas, and a read must receive responses from two of the three. This 
configuration can tolerate the failure of one node for both reads and writes while still 
guaranteeing that a read will see the latest successful write. However, it requires a 
majority of replicas to be available and responsive, which can increase latency compared 
to more relaxed settings. 

●​ Optimized for Fast, Available Writes (W=1): Setting W=1 allows a write to be 
considered successful as soon as a single replica has persisted it. This configuration, 



often paired with R=N (e.g., N=3, R=3, W=1), provides the highest possible write 
availability and the lowest write latency. It is ideal for applications that need to ingest 
data at a high rate, such as logging or event tracking systems, where losing a write is less 
critical than blocking the write operation. Reads, however, become slower and less 
available as they must contact all N replicas. 

●​ Optimized for Fast, Available Reads (R=1): Conversely, setting R=1 allows a read to 
return as soon as it gets a response from any single replica. This provides the fastest 
possible read latency. This is often paired with W=N (e.g., N=3, R=1, W=3) to ensure that 
writes are durable. This setup is well-suited for read-heavy workloads like product 
catalogs or content delivery systems where updates are infrequent but reads are 
numerous and must be fast. 

●​ Highest Availability, Weakest Consistency (R + W <= N): A configuration like N=3, R=1, 
W=1 sacrifices the strong consistency guarantee of the quorum overlap. While this 
provides the fastest possible latency and highest availability for both reads and writes (as 
only one node needs to respond for either operation), it increases the probability of 
reading stale data. This is suitable for applications where eventual consistency is 
perfectly acceptable, such as social media feeds or "likes" counters. 

The following table summarizes these common configurations and their associated trade-offs, 
providing a practical guide for system configuration. 

Configurati
on (N,R,W) 

R+W > N? Optimized 
For 

Read 
Characteris
tics 

Write 
Characteris
tics 

Common 
Use Case 

(3, 2, 2) Yes Strong 
Consistenc
y 

Slower, 
needs 2/3 
nodes 

Slower, 
needs 2/3 
nodes 

Catalogs, 
user 
profiles 
(read-your-
writes) 

(3, 1, 3) Yes Fast, 
Consistent 
Reads 

Fastest, 
needs 1/3 
node 

Slowest, 
needs 3/3 
nodes 

Read-heavy 
systems 
with 
infrequent 
updates 

(3, 3, 1) Yes Fast, 
Available 
Writes 

Slowest, 
needs 3/3 
nodes 

Fastest, 
needs 1/3 
node 

High-volum
e data 
ingestion 
(e.g., 



logging) 

(3, 1, 1) No Highest 
Availability 

Fastest, 
needs 1/3 
node 

Fastest, 
needs 1/3 
node 

Systems 
where stale 
data is 
acceptable 

 

Section 4: Managing Concurrency with Vector Clocks 
 

The combination of a leaderless, "always writeable" architecture and asynchronous 
replication inevitably leads to a complex problem: how to manage concurrent updates to the 
same data item. In a system without a single, authoritative leader to serialize writes, a network 
partition can allow two different clients to update the same key on two different sets of 
replicas. When the partition heals, the system is left with two distinct, conflicting versions of 
the data.3 While traditional databases would use locks or leader election to prevent this 
conflict, doing so would sacrifice the very availability Dynamo is designed to provide. 

Dynamo's solution is not to prevent conflicts, but to detect them and delegate their resolution. 
The mechanism it uses for this detection is the vector clock, a powerful tool for tracking 
causality in distributed systems. 

 

Vector Clocks Explained 

 

A simple timestamp is insufficient for ordering events in a distributed system due to the 
problem of clock skew—different machines' clocks can drift, making it impossible to rely on 
them for a globally consistent ordering.20 Vector clocks solve this by tracking causal history 
rather than physical time.4 

A vector clock is a list of (node, counter) pairs that is associated with a specific version of a 
data object.4 For a system with 

N nodes, the vector would have N counters. The rules for managing vector clocks are as 
follows: 

1.​ Initialization: When an object is first created, its vector clock is initialized, for instance, 
by the creating node Sx to ``. 



2.​ Update Rule: When a node Sy handles an update to an object, it performs two actions 
on the object's vector clock: 
○​ It increments its own counter in the vector. 
○​ It ensures that the resulting vector clock contains the causal history from the version 

it is updating. 
3.​ Comparison Rule: The causal relationship between two versions of an object, V1 and V2, 

can be determined by comparing their respective vector clocks, VC1 and VC2: 
○​ V1 is an ancestor of V2 (V1 causally precedes V2): This is true if and only if every 

counter in VC1 is less than or equal to the corresponding counter in VC2, and at least 
one counter in VC1 is strictly less than its counterpart in VC2. In this case, V2 
subsumes V1, and the system can safely discard V1.4 

○​ V1 and V2 are in conflict (concurrent siblings): This occurs if VC1 is not an 
ancestor of VC2, and VC2 is not an ancestor of VC1. This means some counters in 
VC1 are greater than those in VC2, while some counters in VC2 are greater than those 
in VC1. This indicates that the two versions evolved on parallel, causally independent 
branches of history, and a conflict has occurred.21 

This mechanism of embedding causal history directly into the data itself is a cornerstone of 
Dynamo's decentralized design. It allows any node to deterministically reason about the order 
of events and detect conflicts without needing to communicate with a central coordinator. The 
history is self-contained within the object's metadata, a critical feature for a symmetric, 
peer-to-peer architecture. 

 

Vector Clocks in Action: The get and put Lifecycle 

 

Vector clocks are integrated directly into Dynamo's get and put operations, facilitated by the 
context object. 

●​ When a client performs a get(key) operation, the coordinator node requests all versions 
of the object from the nodes in the key's preference list (or at least from an R quorum). It 
then uses the vector clock comparison rule to determine the causal relationships 
between the versions it receives. If one version is a clear descendant of all others, the 
coordinator returns only that single, authoritative version to the client, along with its 
context (which contains the vector clock). If it finds two or more versions that are in 
conflict (i.e., they are concurrent siblings), it returns a list of all conflicting objects, each 
with its own context.7 

●​ When a client wishes to update an object, it must perform a put(key, context, object) 
operation, passing back the context it received from a previous get. When the 
coordinator for the put receives this request, it uses the vector clock within the provided 
context to determine the new version's place in the causal history. It increments its own 



counter and merges this with the client-provided clock to create the new vector clock for 
the new version of the object. This new version is then written to a W quorum of replicas. 

 

Application-Side Conflict Resolution 

 

This process places the final, critical step of conflict resolution squarely on the application. 
When a get operation returns multiple conflicting versions, the database has fulfilled its duty 
by detecting the conflict. It is now up to the application to reconcile these versions based on 
its own business logic.1 

For example, if an application managing a shopping cart receives two conflicting versions, its 
reconciliation logic might be to take the union of the items in both carts. After merging the 
data, the application would then perform a put with the new, resolved version. The context for 
this put would be constructed by merging the vector clocks of the conflicting versions it just 
resolved and then incrementing the current coordinator's counter. This act of writing back a 
resolved version collapses the divergent history back into a single, causally consistent 
timeline. 

 

Section 5: Engineering for Resilience: Failure Handling and Detection 
 

In a large-scale distributed system, components are constantly failing. Servers crash, 
networks partition, and disks fail. A resilient system must treat failure not as an exceptional 
event, but as a standard mode of operation.5 Dynamo is engineered with a multi-layered 
defense strategy to remain highly available and to ensure that, despite transient failures and 
inconsistencies, all data replicas eventually converge to the same state. This strategy relies on 
a hierarchy of mechanisms, each designed to handle a different class of failure on a different 
timescale. 

 

Sub-section 5.1: Membership and Failure Detection with the Gossip Protocol 

 

Before nodes can cooperate to replicate data or handle failures, they must first be aware of 
each other's existence and health status. In a decentralized system without a central registry, 
this information must be discovered and maintained in a peer-to-peer fashion. Dynamo uses a 



gossip protocol for this purpose.5 

A gossip protocol, also known as an epidemic protocol, works by having each node 
periodically exchange state information with a small, randomly selected set of other nodes.23 
This information includes the node's own state and its knowledge of other nodes' states (e.g., 
their health, load, and the virtual node tokens they own). Over time, this information 
propagates through the entire cluster much like a rumor spreads through a social network. 
This process allows all nodes to build and maintain an eventually consistent view of the 
cluster's membership and health without overwhelming the network with all-to-all 
communication.25 

Failure detection is also made more robust through gossip. If a node A repeatedly fails to 
communicate with node B, it does not immediately declare B as dead. Instead, it begins 
gossiping to its peers that B is suspected to be unreachable. Other nodes will then also 
attempt to verify B's status. A node is only marked as failed after a consensus emerges among 
its peers, making the detection mechanism resilient to transient network glitches that might 
only affect a single node's perspective.3 

 

Sub-section 5.2: Handling Temporary Failures with Sloppy Quorum and Hinted 
Handoff 

 

The strict quorum model (R + W > N) can compromise availability. For a common configuration 
like (N=3, W=2), if one of the top three nodes in a key's preference list is temporarily down, a 
write operation would be forced to fail. To uphold the "always writeable" principle, Dynamo 
employs two complementary techniques: sloppy quorum and hinted handoff. 

●​ Sloppy Quorum: This technique relaxes the requirement that reads and writes must be 
fulfilled by the top N nodes in the preference list. Instead, during a failure, the operation 
is sent to the first N healthy nodes encountered when walking the consistent hashing 
ring, which may not be the same nodes as in the original preference list.4 This allows the 
quorum (​
R or W) to be met even when some of the primary replica nodes are unavailable, thus 
preserving availability. 

●​ Hinted Handoff: When a healthy node accepts a write on behalf of a failed node, it 
doesn't treat the data as its own. It stores the data locally but includes metadata, or a 
"hint," indicating that the data's rightful owner is the failed node.4 The temporary node 
periodically checks if the failed node has recovered. Once the original node is back 
online, the temporary node "hands off" the hinted replica to it. After the transfer is 
complete, the temporary node can delete its local copy. This mechanism ensures that 
writes are not lost during transient failures and that the system's replication factor is 



eventually restored. 

 

Sub-section 5.3: Handling Permanent Divergence with Anti-Entropy 

 

While hinted handoff is effective for short-term, transient failures, it is not a foolproof 
mechanism for ensuring long-term consistency. For example, a temporary node holding a 
hinted replica could itself suffer a permanent failure before it has a chance to hand off the 
data. Over time, replicas can diverge due to these or other unforeseen events. To act as a final 
backstop and guarantee eventual consistency, Dynamo implements a background 
anti-entropy protocol.2 

The core challenge of anti-entropy is to efficiently compare replicas that may contain 
terabytes of data and synchronize any differences with minimal network overhead. A naive 
approach of sending the entire dataset for comparison would be prohibitively expensive. 
Dynamo solves this with Merkle trees. 

●​ Merkle Trees: A Merkle tree, or hash tree, is a tree in which every leaf node is a hash of 
an individual data block (in Dynamo's case, a key-value pair), and every non-leaf node is 
a hash of its children.7 The root of the tree represents a hash of the entire dataset. 

●​ Efficient Comparison: To synchronize, two nodes responsible for the same range of 
keys only need to exchange the root hash of their respective Merkle trees.2 

○​ If the root hashes match, the nodes can conclude that their replicas are identical, 
and no further communication is needed. 

○​ If the root hashes differ, it indicates an inconsistency. The nodes then exchange the 
hashes of the children of the root. They can recursively traverse down the tree, 
comparing hashes at each level, only exploring the branches where the hashes do 
not match.10 

○​ This process allows the nodes to quickly and efficiently pinpoint the exact keys that 
are different, requiring them to transfer only the divergent data, not the entire replica 
set. This dramatically reduces the network bandwidth required for synchronization.10 

This layered approach to resilience is a key takeaway in robust distributed systems design. 
Fast, optimistic protocols like hinted handoff are used for common, transient failures, while 
slower, more comprehensive protocols like the anti-entropy mechanism provide the ultimate 
guarantee of correctness for exceptional cases. 

 

Part III: Implementation and Practical Considerations 



 

 

Section 6: The Anatomy of a Dynamo Node 
 

The preceding sections have described the high-level distributed algorithms that govern how 
a cluster of Dynamo nodes interact. This section delves into the internal architecture of a 
single node, exploring how it processes client requests and manages the physical storage of 
its data. The design choices made within a single node are just as critical to the system's 
overall performance and scalability as the distributed protocols. 

 

Sub-section 6.1: Request Routing and Coordination 

 

A client application needs to direct its get and put requests to a node that can coordinate the 
operation. In Dynamo's symmetric, leaderless architecture, any node can act as a coordinator. 
The coordinator's role is to identify the nodes in the key's preference list and manage the 
quorum-based read or write operation on behalf of the client. There are two primary 
strategies for routing a client's request to an appropriate coordinator.3 

1.​ Server-Side Coordination via a Load Balancer: In this model, the client is unaware of 
the partitioning logic of the Dynamo cluster. It sends all its requests to a generic load 
balancer, which then forwards the request to any available node in the cluster, chosen 
based on load or round-robin policies.31 The node that receives the request from the load 
balancer becomes the coordinator for that specific operation. It uses its local copy of the 
cluster membership state to determine the preference list for the requested key and then 
proxies the request to the correct replica nodes. This approach is simple for the client 
but introduces an extra network hop, which can increase latency. It also places the load 
balancer and the initial receiving node on the critical path.3 

2.​ Client-Side Coordination via a Partition-Aware Library: A more performant approach 
involves making the client "smarter." In this model, the client application integrates a 
library that is aware of the cluster's partitioning scheme.3 This library periodically 
communicates with the Dynamo cluster (e.g., via the gossip protocol) to maintain a local, 
up-to-date copy of the cluster membership and the mapping of virtual nodes to physical 
nodes. When the application needs to perform an operation, the client library itself can 
hash the key, determine the preference list, and send the request directly to one of the 
top​
N nodes in that list, which then acts as the coordinator.33 This eliminates the extra 
network hop of the load balancer model, resulting in significantly lower latency. The 



trade-off is increased complexity on the client side, as the library must now manage 
cluster state. 

 

Sub-section 6.2: The Local Persistence Engine: Log-Structured Merge-Trees 
(LSM-trees) 

 

Each node in the Dynamo cluster is responsible for storing a subset of the total data. The 
choice of the local storage engine—the software component that manages data on the 
node's physical disks—has a profound impact on performance. Dynamo's design favors a 
pluggable storage engine, allowing different engines to be used based on the application's 
needs.35 However, for the write-intensive workloads that Dynamo is designed for, a 
Log-Structured Merge-Tree (LSM-tree) is an exceptionally good fit.36 

The core principle of an LSM-tree is to optimize for high write throughput by converting the 
small, random write operations typical of database workloads into large, sequential writes to 
disk. This is highly efficient for both traditional spinning hard disk drives (HDDs), which suffer 
from high seek time penalties for random access, and modern solid-state drives (SSDs), which 
have finite write endurance and perform better with sequential writes.38 

The architecture of an LSM-tree can be understood by its distinct write and read paths. 

●​ The Write Path: 
1.​ Write-Ahead Log (WAL): To ensure durability, an incoming write operation is first 

appended to a sequential log file on disk, the Write-Ahead Log. If the node crashes, 
this log can be replayed to recover any writes that were not yet fully persisted.36 

2.​ Memtable: After being written to the WAL, the key-value pair is inserted into an 
in-memory data structure, typically a sorted one like a skip list or a balanced binary 
tree, known as the Memtable.37 The write operation can be acknowledged as 
successful to the client at this point, making writes extremely fast as they only involve 
an in-memory operation and a sequential log append. 

3.​ SSTable Flush: The Memtable has a fixed size. When it becomes full, it is "frozen" (a 
new Memtable is created for subsequent writes), and the contents of the full 
Memtable are flushed to disk as a new file. This file is called a Sorted String Table 
(SSTable) because the key-value pairs within it are sorted. This flush operation is a 
large, sequential write, which is highly efficient.37 SSTables are immutable; once 
written, they are never modified. 

●​ The Read Path: To find the value for a given key, the system must search for the most 
recent version, which could be in one of several places. The search proceeds in a specific 
order: 
1.​ First, the active Memtable is checked, as it contains the most recent writes. 



2.​ If the key is not found, the search proceeds to the frozen Memtables that are in the 
process of being flushed. 

3.​ Finally, the on-disk SSTables are checked, starting from the newest and proceeding 
to the oldest. Since an update or deletion of a key is simply a new entry in a newer 
SSTable, the first version found is guaranteed to be the most recent.​
To avoid the costly process of checking every single SSTable on disk for every read, 
LSM-trees employ Bloom filters. A Bloom filter is a probabilistic data structure that 
can quickly and definitively say "this key is not in this SSTable." It can have false 
positives (it might say a key is present when it's not), but it never has false negatives. 
This allows the read path to skip scanning the vast majority of SSTables, dramatically 
improving read performance.37 

●​ Compaction and Write Amplification: Over time, the write process creates a large 
number of SSTables on disk. To manage this and to reclaim space from deleted or 
updated records, a background process called compaction runs periodically.36 
Compaction reads several SSTables, merges them together, discards overwritten or 
deleted data, and writes out a new, larger, and more compact SSTable. 

This merging process is the source of a critical metric for storage engines called write 
amplification: the ratio of the total bytes written to the physical storage device versus the 
bytes written by the application.42 For every 1 byte of application data written, the compaction 
process might rewrite that byte multiple times as it gets merged into progressively larger 
SSTables. High write amplification is a major consideration for the endurance and lifespan of 
SSDs. 

The design of the LSM-tree storage engine within a single node exhibits a fascinating parallel 
to the design of the Dynamo distributed system as a whole. Both systems prioritize high write 
performance by employing an append-only, eventually consistent model. At the macro level, 
the distributed system accepts writes quickly on any replica and defers the work of making all 
replicas consistent to background processes like hinted handoff and anti-entropy. At the 
micro level, the LSM-tree on a single node accepts writes quickly into an in-memory Memtable 
and defers the work of organizing that data on disk to the background compaction process. 
This fractal-like architectural pattern demonstrates that the fundamental principles of 
deferring and batching organizational work are effective at both the single-node and 
multi-node scales. 

 

Section 7: A Phased Implementation Roadmap 
 

Building a complete, production-ready distributed database is a monumental undertaking. 
However, for the purpose of learning, the project can be broken down into a series of 
manageable phases. Each phase builds upon the last, introducing a new layer of distributed 



systems concepts and functionality. This roadmap provides a structured approach to 
constructing a Dynamo-style key-value store from the ground up.45 

 

Phase 1: The Single-Node Key-Value Store (The Core Engine) 

 

The foundation of any distributed database is a robust single-node storage engine. The goal 
of this phase is to build a persistent, high-performance key-value store that runs on a single 
machine. This component will later be replicated and distributed across the cluster. 

●​ Core Components to Build: 
1.​ API Definition: Implement the basic get(key) and put(key, value) API endpoints. At 

this stage, the value is a simple byte array. 
2.​ In-Memory Memtable: Create an in-memory data structure to handle incoming 

writes. A simple hash map or a more advanced sorted structure like a skip list can be 
used. 

3.​ Write-Ahead Log (WAL): Implement a simple append-only log file. Before a put 
operation is added to the Memtable, it must first be written to the WAL to ensure 
durability in case of a crash. 

4.​ SSTable Flushing: Implement the logic to flush the Memtable to a sorted file 
(SSTable) on disk when it reaches a configured size threshold. 

5.​ Read Logic: Implement the get operation to first check the Memtable for the key. If 
not found, it must then scan the on-disk SSTables (from newest to oldest) to find the 
key. 

●​ Further Work (Advanced Single-Node Features): 
○​ Compaction: Implement a background process to merge smaller SSTables into 

larger ones to reclaim space and improve read performance. 
○​ Bloom Filters: Add a Bloom filter to each SSTable to allow the read path to quickly 

skip files that do not contain the requested key. 
○​ Implementation tutorials for LSM-trees can be found in sources.40 

 

Phase 2: Distribution and Data Placement (Going Distributed) 

 

With a working single-node engine, the next step is to distribute the data across a cluster of 
these nodes. 

●​ Core Components to Build: 
1.​ Networking Layer: Establish a mechanism for nodes to communicate with each 

other. This can be done using a framework like gRPC or by building on top of raw TCP 



sockets. 
2.​ Consistent Hashing with Virtual Nodes: Implement the consistent hashing ring. 

This involves creating a data structure (like a sorted map) to store the virtual node 
hashes and their corresponding physical node identifiers. 

3.​ Request Routing: Implement the logic that, given a key, can use the consistent 
hashing ring to identify the correct coordinator node for that key. 

4.​ Request Proxying: Modify the node's API handler. If a node receives a request for a 
key it does not coordinate, it should look up the correct coordinator and forward 
(proxy) the request to that node. 

○​ Implementation tutorials for consistent hashing can be found in sources.52 

 

Phase 3: Replication and Durability (Making it Robust) 

 

This phase focuses on making the distributed store fault-tolerant by replicating data. 

●​ Core Components to Build: 
1.​ Preference List: Implement the logic to determine the N-node preference list for any 

given key by walking the consistent hashing ring. 
2.​ Replication Logic: Modify the put logic on the coordinator node. Instead of just 

writing locally, it must now send the write request to the other N-1 nodes in the key's 
preference list. 

3.​ Quorum Implementation: Implement the configurable (N, R, W) quorum system. For 
a put, the coordinator must wait for W acknowledgements from the replica nodes 
before returning success to the client. For a get, it must wait for R responses, 
potentially perform read repair, and then return the result. 

○​ Implementation tutorials for data replication can be found in sources.54 

 

Phase 4: Concurrency Control (Handling Simultaneous Writes) 

 

Now, the system must be enhanced to correctly handle the concurrent updates that are 
possible in a leaderless architecture. 

●​ Core Components to Build: 
1.​ Vector Clock Data Structure: Implement a data structure to represent a vector 

clock (e.g., a map of node IDs to integer counters). 
2.​ Data Model Modification: Change the on-disk and in-memory data format. Instead 

of storing just a value for a key, the system must now store a list of (value, 
vector_clock) pairs. 



3.​ API Modification: Update the get and put API to handle the opaque context object, 
which will carry the vector clock information between the client and the server. 

4.​ Conflict Detection Logic: Implement the vector clock comparison logic. The get 
operation must now use this logic to identify conflicting versions and return them all 
to the client. The put operation must use the context to create the vector clock for 
the new version. 

○​ Implementation tutorials for vector clocks can be found in sources.57 

 

Phase 5: High Availability and Self-Healing (The "Always-On" System) 

 

The final phase involves implementing the background processes that make the system truly 
resilient and self-healing. 

●​ Core Components to Build: 
1.​ Gossip Protocol: Implement a gossip protocol for cluster membership and failure 

detection. Each node should periodically exchange its view of the cluster state with a 
few random peers. 

2.​ Sloppy Quorum and Hinted Handoff: Modify the write logic to implement sloppy 
quorums. If a node in the preference list is marked as "down" (based on information 
from the gossip protocol), the coordinator must find the next healthy node on the 
ring to send the replica to, along with a "hint" about its intended owner. 

3.​ Anti-Entropy with Merkle Trees: Implement a background anti-entropy process. 
Nodes should periodically build Merkle trees for the key ranges they own and 
compare root hashes with their peers to detect and repair inconsistencies. 

○​ Tutorials for these concepts can be found in sources 23 for gossip, and 30 for 
anti-entropy. 

 

Part IV: From Theory to Practice - The Evolution to 
DynamoDB 
 

 

Section 8: Lessons from a Decade of Production Use 
 

The original Dynamo paper, published in 2007, was a seminal work that provided a blueprint 



for a new class of highly available databases and heavily influenced the NoSQL movement.63 
However, the internal Dynamo system it described was not a final product but a set of 
principles and techniques. The journey from that internal system to the globally available, 
multi-tenant cloud service known as Amazon DynamoDB involved significant architectural 
evolution, driven by years of operational experience and a deeper understanding of customer 
needs in a managed service context.64 Understanding this evolution provides crucial context 
for the practical application of Dynamo's principles. 

 

Dynamo vs. DynamoDB: Key Architectural Differences 

 

While DynamoDB is "built on the principles of Dynamo," it is not a direct implementation. 
Several key architectural decisions were made to adapt the original design for a fully 
managed, public cloud service.63 

●​ Replication Model: The most fundamental architectural shift is the move from the purely 
leaderless, peer-to-peer replication model of Dynamo to a single-leader replication 
model per partition in DynamoDB.65 In DynamoDB, the key space is divided into 
partitions, and within each partition, one of the three replicas is elected as the leader. 
This leader is responsible for coordinating all write operations for that partition. This 
change represents a pragmatic retreat from pure decentralization. While Dynamo's 
leaderless model is elegant and maximizes write availability, it makes providing strong 
consistency and multi-key transactions exceptionally difficult. By establishing a leader for 
each partition, DynamoDB creates a single point of serialization for all writes within that 
partition's key range. This makes it much simpler to offer stronger consistency 
guarantees and transactional capabilities, features that are highly demanded by a broad 
range of applications. This introduces the complexity of leader election (often managed 
by a consensus algorithm like Paxos), but it significantly simplifies the developer 
experience.66 

●​ Consistency Model: The original Dynamo was designed primarily as an eventually 
consistent system, with strong consistency being achievable only through careful 
configuration of quorums (R+W > N). DynamoDB, by contrast, offers strongly consistent 
reads as a first-class, configurable option on a per-request basis.67 This is a direct 
benefit of the leader-per-partition architecture; a strongly consistent read is simply 
routed to the leader node for that partition, which is guaranteed to have the most 
up-to-date state. 

●​ Transactional Support: The leader-based model also paved the way for the introduction 
of ACID transactions in DynamoDB.70 DynamoDB transactions allow for atomic, 
all-or-nothing operations across multiple items, even spanning different tables. 
Implementing this level of transactional integrity in a truly leaderless system is a 
notoriously difficult distributed computing problem. The partition leader provides the 



necessary coordination point to make such transactions feasible in a production 
environment. 

 

User Needs in a Managed Service 

 

The evolution to DynamoDB was also heavily influenced by observing how developers actually 
used database systems in a cloud environment. 

●​ The Importance of Predictable Performance: The DynamoDB team learned that for 
many customers, predictable performance, especially at the tail end of the latency 
distribution (the 99.9th percentile), was more important than raw peak throughput.8 In a 
multi-tenant cloud service, where one customer's workload can potentially impact 
another's (the "noisy neighbor" problem), providing consistent, predictable latency is a 
critical feature that builds trust and simplifies application development.64 

●​ The Value of "Fully Managed": A revealing lesson came from observing internal Amazon 
teams. Despite the availability of the powerful Dynamo system, many teams opted to use 
Amazon SimpleDB, an earlier, less capable, but fully managed NoSQL service.64 This 
demonstrated that developers would often trade raw performance and configurability for 
operational simplicity. The immense burden of provisioning, scaling, patching, securing, 
and backing up a distributed database was something most teams wanted to offload. 
This insight was central to DynamoDB's design as a fully managed service that automates 
these complex operational tasks.73 

 

Advanced Features as a Path for Further Learning 

 

The modern DynamoDB service includes a host of advanced features that build upon the 
foundational principles of Dynamo, offering avenues for further study in distributed systems. 

●​ Global Tables: This feature extends the DynamoDB architecture to a multi-region, 
multi-active configuration. It allows for the creation of replica tables in different AWS 
regions around the world, with data automatically replicated between them.75 This 
provides low-latency data access for globally distributed users and serves as a robust 
disaster recovery solution. 

●​ Adaptive Capacity: The original Dynamo paper discussed handling heterogeneity by 
assigning more virtual nodes to more powerful servers. DynamoDB takes this concept 
much further with adaptive capacity. The service automatically monitors the traffic to 
individual partitions and can dynamically respond to "hot partitions" by temporarily 
boosting their throughput capacity or even splitting a hot partition into two to better 



distribute the load.78 This is a sophisticated, automated operational feature that goes far 
beyond the static configuration described in the original paper. 

In conclusion, the journey from Dynamo to DynamoDB illustrates a key principle of systems 
engineering: the "best" architecture is often a pragmatic hybrid of multiple pure models. The 
final design of DynamoDB tempers the elegant, pure decentralization of the original Dynamo 
with a limited form of leadership at the partition level. This compromise was necessary to 
deliver the features—strong consistency, transactions, and predictable performance—that a 
broad base of real-world applications requires, all while retaining the core Dynamo principles 
of incremental scalability and high availability in a fully managed cloud service. 
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