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Introduction: The Architectural Philosophy of a 
High-Performance OLAP DBMS 
 

The design and implementation of any high-performance database system are fundamentally 
a response to a specific set of computational and business challenges. ClickHouse, an 
open-source Online Analytical Processing (OLAP) Database Management System (DBMS), is 
no exception. Its architecture is meticulously engineered to address five key challenges that 
define modern, large-scale analytical data management: the ability to handle enormous and 
rapidly growing datasets with high ingestion rates; the capacity to execute many simultaneous 
queries with low latency; seamless integration with diverse landscapes of data stores and 
formats; the provision of an expressive and convenient SQL dialect with sophisticated 
performance introspection tools; and the assurance of industry-grade robustness and 
versatile deployment options.1 To meet these demanding requirements, ClickHouse is built 
upon a set of core architectural principles that permeate every layer of its design, from data 
storage to query execution. 

 

The Columnar Paradigm as a First Principle 
 

At its core, ClickHouse is a true column-oriented DBMS.2 This is not merely a storage 
optimization but the foundational axiom from which its performance characteristics are 
derived. In a columnar system, data is not stored in rows but by columns. All values for a single 
column are stored contiguously on disk. This approach has profound implications for 
analytical queries, which typically access a subset of columns from a wide table. By storing 
data column by column, the system can read only the required columns from disk, 
dramatically reducing I/O compared to a row-oriented database that would have to read 



entire rows to access the few necessary values.3 This principle extends beyond physical 
storage into in-memory processing. During query execution, data is processed in arrays, or 
vectors, of column data, a structure that directly enables the system's primary performance 
mechanism: vectorized query execution.2 

 

Vectorized Query Execution: The Engine of Performance 
 

ClickHouse employs a vectorized query execution model, a technique that is central to its high 
performance.2 Instead of processing data one value at a time in a tight loop (e.g., 

for each row, do operation), operations are dispatched on arrays or "chunks" of column data.2 
This batch-oriented processing model significantly improves CPU efficiency in several ways. It 
dramatically reduces the overhead of function call dispatches, as a single function call can 
operate on thousands of values. More importantly, it allows the system to leverage modern 
CPU architectures, particularly Single Instruction, Multiple Data (SIMD) capabilities.3 SIMD 
instructions allow a single CPU instruction to be applied to multiple data points 
simultaneously, leading to massive parallelism at the hardware level. This approach ensures 
that the CPU's computational power, not I/O or function call overhead, is the primary factor in 
query execution speed. 

 

System Layering and Core Abstractions 
 

The ClickHouse engine is logically divided into three main layers: the storage layer, the query 
processing layer, and the integration layer.1 These layers interact through a set of core 
in-memory data abstractions. The primary abstraction for column data is the 

IColumn interface, which represents a chunk of a column in memory.2 Operations on 

IColumn objects are typically immutable; they create a new, modified column rather than 
altering the original. While the system is optimized for columnar operations, it also provides a 
mechanism to work with individual values through the Field object, a discriminated union that 
can hold various scalar types. However, this is deliberately inefficient for bulk processing and 
is used sparingly.2 During query execution, chunks of columns are grouped into a container 
called a 

Block, which serves as the unit of data that flows through the query processing pipeline.3 



A defining characteristic of ClickHouse's design is its philosophy of "leaky abstractions".2 
While the 

IColumn interface provides generic methods for data manipulation, the system encourages 
performance-critical functions to bypass this generic interface. Developers are expected to 
cast an IColumn to its specific implementation (e.g., ColumnUInt64) and operate directly on its 
internal, contiguous memory array. This deliberate design choice sacrifices strict software 
engineering encapsulation for raw performance. It is this "leakiness" that allows specialized 
routines to be written that can fully exploit the underlying memory layout and CPU 
capabilities, such as SIMD instructions. This reveals a core aspect of the system's philosophy: 
ClickHouse is engineered to be as close to the hardware as possible, functioning not just as a 
high-level OLAP system but as a performance-engineering framework for data processing. 
This design choice results in a higher performance ceiling but also a steeper learning curve 
for developers contributing to the system, as it requires a deep understanding of low-level 
optimization techniques. 

 

Deployment Philosophy: A Self-Contained Native Binary 
 

Further reinforcing its focus on bare-metal performance, ClickHouse is built in C++ and 
distributed as a single, statically-linked binary with no external runtime dependencies.1 This 
simplifies deployment and, critically, avoids the performance overheads associated with 
managed runtimes like the Java Virtual Machine (JVM), such as garbage collection pauses 
and just-in-time compilation latencies. This design allows ClickHouse to deliver predictable, 
high performance on any hardware, from a developer's laptop to a massive server cluster, 
fulfilling its mandate of versatile and robust deployment.1 

 

Section 1: The Storage Layer - A Deep Dive into the 
MergeTree Engine Family 
 

The MergeTree engine family is the cornerstone of ClickHouse's data storage and retrieval 
capabilities, providing the features necessary for resilience, high-performance data retrieval, 
and high-volume ingestion.4 These engines are the most robust and commonly used in 
ClickHouse, designed to handle the immense scale and velocity of modern analytical 
workloads.5 Their architecture is fundamentally based on the principles of a Log-Structured 
Merge-Tree (LSM Tree), a design that optimizes for write throughput by treating inserts as 



append-only operations. 

 

1.1 The Core MergeTree Engine: An LSM-Tree for Analytics 
 

The base MergeTree engine is the default choice for single-node ClickHouse instances due to 
its versatility and practicality.4 Its design is centered around the concept of immutable data 
parts. When data is inserted into a 

MergeTree table, it is written to a new, self-contained directory on disk known as a "data 
part".6 This process is extremely fast because it is an append-only operation, avoiding the 
costly read-modify-write cycles common in transactional databases. 

Over time, as numerous small inserts create many small data parts, a background process 
asynchronously and continuously merges these smaller parts into larger, more efficient ones.6 
This merging process is the origin of the name 

MergeTree. It compacts the data, improves compression, and keeps the number of files on 
disk manageable. Once a merge is complete, the original smaller parts are marked as inactive 
and are deleted after a configurable interval.6 This LSM-Tree approach defers the expensive 
work of data organization to the background, thereby sustaining very high ingestion rates. To 
minimize the overhead of creating and merging an excessive number of small parts, it is a 
critical best practice to insert data in large batches (e.g., tens of thousands of rows at once) 
or to use asynchronous inserts, which buffer data on the server side before creating a part.6 

The lifecycle of a data part involves several steps upon insertion: the rows are first sorted by 
the table's sorting key, then split into individual columns, each of which is compressed and 
written to a binary file within the new data part directory.6 This self-contained nature means 
each part includes all the metadata necessary for its interpretation, including indexes, column 
statistics, and checksums.6 

 

1.2 Physical Data Organization: From Partitions to Granules 
 

Data within a MergeTree table is organized in a multi-level hierarchy to facilitate efficient 
management and querying. 

 



Partitions 

 

At the highest level, a table's data can be logically divided into partitions using the PARTITION 
BY clause in the CREATE TABLE statement.7 This clause can accept an arbitrary expression, 
though it is most commonly used with a date or timestamp column to partition data by month, 
day, or another time-based interval (e.g., 

PARTITION BY toYYYYMM(event_date)).5 Partitioning serves two primary purposes. First, it is a 
powerful tool for data lifecycle management; operations like 

DROP PARTITION are extremely fast metadata operations that simply delete a directory, 
making it easy to implement retention policies for aging out old data.8 Second, it is a crucial 
mechanism for query optimization. If a query's 

WHERE clause contains a filter on the partitioning key, the query planner can perform 
"partition pruning," completely ignoring all partitions (and their corresponding directories on 
disk) that do not match the filter, thus drastically reducing the scope of the data scan.5 

 

Data Parts 

 

Within each partition directory, data is stored in one or more data parts. As described 
previously, each part is a directory containing all the data and metadata for a specific batch of 
inserted rows.6 Parts belonging to different partitions are never merged together.5 

 

Columns and Compression 

 

Inside a data part's directory, the columnar storage principle is physically realized. Each 
column of the table is stored in its own separate, compressed binary file (typically with a .bin 
extension).6 This physical separation is what allows ClickHouse to read only the specific 
columns required by a query. ClickHouse also supports a 

Compact part format in addition to the default Wide format. In the Compact format, all 
columns are stored in a single file. This format is designed to increase the performance of 
small, frequent inserts by reducing the number of files that need to be opened and written to.5 



 

Granules: The Unit of Data Processing 

 

The data within each column file is further logically divided into granules. A granule is the 
smallest indivisible unit of data that ClickHouse reads from disk during query execution.5 By 
default, a granule consists of 8192 rows.10 This concept is fundamental to ClickHouse's 
indexing strategy. When processing a query, ClickHouse does not read individual rows; it 
reads entire granules into memory for processing. This block-based approach is highly 
efficient for analytical workloads that scan large amounts of data. 

 

Mark Files 

 

To locate granules within the large column files, ClickHouse uses mark files (with a .mrk2 
extension).8 For each column, a mark file stores the physical offset in the 

.bin file corresponding to the beginning of each granule. The primary index, which is small 
enough to fit in memory, contains pointers to these "marks." This allows the query engine to 
seek directly to the start of a required granule in a column file without having to scan the file 
from the beginning. 

 

1.3 The Sparse Primary Index: The Key to Efficient Data Pruning 
 

ClickHouse's primary index is one of its most critical and unique performance features. It is a 
"sparse" index that enables the engine to efficiently prune large swaths of data from a query, 
minimizing disk I/O. 

 

The ORDER BY Key is the Primary Key 

 

A crucial aspect of schema design in ClickHouse is that the primary index is defined by the 
ORDER BY clause, not a separate PRIMARY KEY clause.8 The 

ORDER BY expression determines the physical sort order of data within each data part. If a 



PRIMARY KEY clause is specified, it must be a prefix of the ORDER BY key; its primary function 
is to provide a unique key for specialized engines like ReplacingMergeTree, not to define the 
main index.9 This tight coupling of physical data order and the primary index makes the choice 
of the 

ORDER BY key the single most important decision when designing a MergeTree table. The 
data sorting improves data compression, as similar values are grouped together, and it is the 
prerequisite for the sparse index to function effectively.5 

 

Sparsity Explained 

 

The index is termed "sparse" because, unlike a traditional B-Tree index in an OLTP database, it 
does not contain an entry for every row. Instead, it stores an index entry—the value of the 
ORDER BY key—for only the first row of each granule.8 Given the default granule size of 8192 
rows, this means the index is over 8000 times smaller than a dense index. This extreme 
sparseness ensures that the entire primary index for a data part (stored in the 

primary.idx file) can easily fit into memory, even for tables with trillions of rows.10 

 

Mechanism of Pruning 

 

The data pruning process leverages this in-memory sparse index to dramatically reduce the 
amount of data read from disk. When a query contains a WHERE clause that filters on the 
columns of the ORDER BY key, the following occurs 10: 

1.​ ClickHouse loads the small primary.idx file for each relevant data part into memory. 
2.​ It performs a fast binary search on this in-memory index to identify the ranges of 

granules whose first-row key values indicate that they might contain data matching the 
query's conditions. For example, if the key is a timestamp and the query asks for data 
from a specific hour, ClickHouse can quickly find the range of granules that cover that 
hour. 

3.​ For the identified granule ranges, ClickHouse consults the mark files (.mrk2) to get the 
physical offsets of those granules within the on-disk column files (.bin). 

4.​ Finally, the engine seeks directly to these offsets and reads only the required granules 
from disk, completely skipping all other granules. 

This mechanism is exceptionally efficient for range queries and queries that filter on a prefix 



of the ORDER BY key.12 To maximize its effectiveness, a common best practice is to order the 
columns in the 

ORDER BY key from lowest cardinality to highest cardinality. This creates longer, more 
consistent runs of values for the initial columns in the key, allowing the index to prune data 
more effectively on those columns.8 

 

1.4 Secondary Data Skipping Indexes 
 

While the primary index is extremely powerful, it can only accelerate queries that filter on the 
ORDER BY key. To provide data skipping capabilities for other columns, ClickHouse offers 
secondary, or "data skipping," indexes.13 These indexes store aggregate metadata for blocks 
of granules (where the block size is defined by the index's 

GRANULARITY). During query planning, ClickHouse checks this metadata to determine if a 
block of granules can be skipped entirely. 

Several types of data skipping indexes are available, each suited for different data types and 
query patterns 14: 

●​ minmax: This index stores the minimum and maximum values of the indexed expression 
for each block. It is very lightweight and ideal for accelerating range queries (>, <, 
BETWEEN) on numeric or date columns that are not in the primary key but may have 
some correlation with it.14 

●​ set(N): This index stores a set of all unique values within a block, up to a maximum of N 
values. It is effective for equality or IN queries on columns that have low cardinality within 
each block, even if the overall column cardinality is high.15 

●​ bloom_filter: This index uses a Bloom filter, a probabilistic data structure, to test for the 
presence of a value within a block. It is highly space-efficient and excellent for 
accelerating equality and IN queries on high-cardinality columns like UserID or IPAddress, 
where the goal is to find a "needle in a haystack".13 A query can efficiently skip blocks 
where the Bloom filter guarantees the value is not present. 

●​ tokenbf_v1 and ngrambf_v1: These are specialized Bloom filter variants designed for 
text search. tokenbf_v1 splits strings into tokens (words) and indexes them, accelerating 
hasToken() and LIKE queries for whole words. ngrambf_v1 splits strings into n-grams 
(substrings of length n), enabling efficient substring searches.16 

While powerful, data skipping indexes add overhead to data ingestion and consume storage. 
They should be applied judiciously after the primary key has been carefully designed and 



optimized.14 

 

1.5 Specialized MergeTree Variants: Handling Data Mutation and 
Aggregation 
 

The base MergeTree engine is designed for immutable, append-only data. However, many 
real-world analytical use cases require semantics for updating, deleting, or pre-aggregating 
data. To accommodate this without sacrificing ingestion performance, ClickHouse provides a 
family of specialized MergeTree engines. These engines extend the base functionality by 
applying additional logic during the background merge process.4 

This design pattern of deferring mutation logic to the background merge process is a 
cornerstone of ClickHouse's architecture. It avoids the performance penalty of immediate, 
synchronous read-modify-write operations that would be prohibitive in a columnar store. 
Instead, the intent of a mutation is captured in a new, quickly appended row (e.g., a row with 
Sign = -1 to signify a deletion). The actual mutation is then executed lazily and asynchronously 
during a merge. This creates a model of eventual consistency. Data in these tables can exist in 
an "unsettled" state—duplicates may be visible in a ReplacingMergeTree table, or canceled 
rows may appear in a CollapsingMergeTree table—until a merge has processed them. For 
queries that require absolute, up-to-the-second consistency, the FINAL modifier can be used 
in the FROM clause. This forces ClickHouse to perform a final merge of the data in the 
background before executing the query, guaranteeing a correct result at the cost of query 
performance.18 The user must be aware of and actively manage this trade-off between 
ingestion speed, query performance, and data consistency. 

The primary specialized variants are detailed in Table 1. 

Table 1: The MergeTree Engine Family 

 

Engine Name Core Function Key Mechanism Ideal Use Case 

MergeTree Base engine for 
high-throughput 
analytics. 

Background 
merges of 
immutable, sorted 
data parts. 

General-purpose 
storage for 
time-series, logs, 
and event data. 5 

ReplicatedMergeT Adds high Replicates data and Production 



ree availability to any 
MergeTree engine. 

coordinates merges 
across nodes via 
ClickHouse Keeper. 

deployments 
requiring fault 
tolerance and data 
redundancy. 4 

ReplacingMergeTr
ee 

Removes duplicate 
entries based on 
the sorting key. 

During a merge, for 
rows with the same 
sorting key, it keeps 
only the last 
inserted row or the 
one with the 
maximum value in 
an optional ver 
column. 

Deduplicating 
event streams or 
implementing 
upsert logic for 
dimension tables. 4 

SummingMergeTr
ee 

Automatically sums 
numeric data 
during merges. 

During a merge, it 
replaces rows with 
the same sorting 
key with a single 
row where 
specified numeric 
columns are 
summed. 

Creating simple, 
pre-aggregated 
summary tables for 
reporting. 4 

AggregatingMerg
eTree 

Incrementally 
combines 
aggregate function 
states. 

Stores intermediate 
aggregation states 
using the 
AggregateFunction 
data type and 
merges these 
states during 
background 
processing. 

Building 
materialized views 
for complex 
aggregations (e.g., 
avg, uniq, 
quantiles) for 
dashboards. 4 

CollapsingMergeT
ree 

Asynchronously 
collapses pairs of 
state/cancellation 
rows. 

During a merge, it 
removes pairs of 
rows with the same 
sorting key but 
opposite Sign 
values (1 and -1). 

Tracking the state 
of objects that 
change over time, 
where only the final 
state is important. 4 



VersionedCollapsi
ngMergeTree 

An enhanced 
version of 
CollapsingMergeTr
ee that handles 
out-of-order state 
changes. 

Uses an additional 
version column 
alongside the Sign 
column to correctly 
collapse rows, 
regardless of their 
insertion order. 

More robust state 
tracking in 
distributed systems 
where event 
ordering is not 
guaranteed. 4 

 

Section 2: The Query Execution Pipeline - From SQL to 
Result Set 
 

The transformation of a user's SQL query into a result set within ClickHouse is a multi-stage 
compilation and execution process designed for performance and transparency. This pipeline 
takes a high-level declarative SQL statement and converts it into a highly optimized, 
parallelized data flow graph that can be executed efficiently by the engine. Understanding this 
pipeline is crucial for diagnosing and optimizing query performance. 

 

2.1 Query Lifecycle: Parsing and Semantic Analysis 
 

The query lifecycle begins when a client application sends a SQL string to the server, which is 
received by the TCP handler.25 

1.​ Parsing (Lexical and Syntactic Analysis): The raw SQL query is first passed to a 
parser. A lexical analyzer breaks the string into a sequence of fundamental units called 
tokens (e.g., keywords like SELECT, identifiers, operators). Following this, a syntactic 
analyzer constructs an Abstract Syntax Tree (AST) from the stream of tokens. The AST 
is a hierarchical, tree-based representation of the query's logical structure, capturing the 
relationships between its components.25 This initial, unvalidated structure can be 
inspected using the​
EXPLAIN AST command.27 

2.​ Analyzer and Query Tree: The AST is then handed off to the Analyzer. This is a critical 
component that performs semantic analysis. It validates the query by checking for the 
existence of databases, tables, and columns; verifying data types; and resolving 
identifiers like aliases and wildcards (*). The Analyzer transforms the purely syntactic AST 
into a more detailed and semantically rich Query Tree. This new structure has resolved 



references to the underlying storage and has undergone initial logical optimizations.26 
ClickHouse is transitioning from an older analyzer to a new, more powerful architecture 
that is enabled by default.26 The state of the query after this stage can be viewed with​
EXPLAIN QUERY TREE.27 

 

2.2 Planning and Optimization 
 

Once a valid Query Tree is constructed, it is passed to the Planner. The Planner's role is to 
convert the logical representation of the query (the what) into a concrete execution plan (the 
how).26 This stage involves applying a series of advanced optimization rules, including: 

●​ Query Rewriting: The query may be syntactically rewritten for more efficient execution. 
For example, JOINs might be reordered, or filters might be transformed. 

●​ Predicate Pushdown: WHERE clause conditions are pushed down as close to the data 
source as possible to filter data early and reduce the amount of data processed in later 
stages. 

●​ Index Selection: The planner analyzes the query's filters against the available primary 
and secondary indexes of the target tables. It determines which indexes can be used to 
prune data parts and granules, a critical step for performance. 

The output of this stage is a Query Plan, which is a sequence of logical steps that the 
database will follow to produce the result. This plan can be inspected with EXPLAIN PLAN. 
Using the setting indexes=1 with this command is particularly valuable, as it reveals precisely 
which indexes were used and provides statistics on how many parts and granules were read 
versus the total available, offering direct feedback on the effectiveness of the schema 
design.25 

 

2.3 The Execution Pipeline 
 

The final stage of query compilation is the construction of the Query Execution Pipeline 
from the Query Plan. This pipeline is a directed graph of Processors (or IBlockInputStream 
objects in the older execution model) that stream data from one to another.26 Each processor 
in the graph represents a specific operation in the query plan, such as: 

●​ ReadFromMergeTree: Reads data blocks (granules) from the physical storage of a 
MergeTree table. 

●​ Filter: Applies WHERE or HAVING conditions. 



●​ ExpressionTransform: Applies calculations or transformations to columns (e.g., the 
expressions in the SELECT list). 

●​ AggregatingTransform: Performs the GROUP BY aggregation. 
●​ MergeSorting: Merges sorted blocks for an ORDER BY clause. 

Execution within this pipeline is vectorized. Processors do not operate on individual rows; 
they consume and produce entire Blocks of data at a time.2 This batch processing model is 
the key to leveraging CPU cache and SIMD instructions for high throughput. The pipeline is 
also inherently parallel; ClickHouse will instantiate multiple instances of pipeline segments to 
distribute the workload across available CPU cores, merging the results at the end.25 The 
structure of this final data flow can be visualized using 

EXPLAIN PIPELINE, which can produce either a textual description or a graphical 
representation in the DOT language.26 

 

2.4 Introspection with EXPLAIN 
 

The multi-stage compilation process in ClickHouse is not a black box. The system provides an 
extensive family of EXPLAIN statements that offer a window into each stage of the query's 
transformation. This level of introspection is a deliberate design choice, reflecting a 
philosophy of transparency that empowers expert users to understand and influence the 
query execution process at a granular level. While many databases provide a single EXPLAIN 
command, ClickHouse's differentiated tools allow a user to trace a query's evolution from raw 
SQL to final execution graph. This transforms performance tuning from a trial-and-error 
process into a systematic investigation. A user can see how their SQL is parsed (AST), how it 
is rewritten (SYNTAX), what logical plan is formed (QUERY TREE), how indexes are applied 
(PLAN), and how data will physically flow (PIPELINE). This empowers the user to become a 
partner in the optimization process, making informed decisions about schema design, 
indexing strategies, and query structure based on direct feedback from the engine's internal 
workings. 

Table 2 provides a summary of the EXPLAIN statement types and their primary use cases in 
the optimization workflow. 

Table 2: EXPLAIN Statement Types and Their Purpose 

EXPLAIN Type Output Represents Primary Use Case Key Settings 

AST Raw Abstract Debugging N/A 



Syntax Tree from 
the parser. 

complex SQL 
syntax to 
understand how 
ClickHouse initially 
interprets the 
query. 

SYNTAX The SQL query 
after AST-level 
optimizations and 
rewrites. 

Understanding how 
ClickHouse 
normalizes or 
rewrites the query 
before semantic 
analysis. 

run_query_tree_pas
ses=1 

QUERY TREE Internal query tree 
structure after 
semantic analysis 
by the Analyzer. 

Inspecting the 
logical query 
structure with 
resolved identifiers 
and initial 
optimizations. 

run_passes=1 

PLAN The sequence of 
logical steps in the 
query execution 
plan. 

Verifying index 
usage and data 
pruning 
effectiveness. This 
is the most 
common tool for 
performance 
tuning. 

indexes=1, 
description=1 

PIPELINE The graph of 
data-processing 
nodes (processors) 
for query 
execution. 

Identifying 
bottlenecks in the 
physical data flow 
and understanding 
parallelism. 

graph=1, 
compact=1 

ESTIMATE Estimated number 
of rows, marks, and 
parts to be read. 

A quick, 
pre-execution 
check to gauge the 
scope of a query's 
data scan on 

N/A 



MergeTree tables. 

 

Section 3: Distributed Architecture - Scaling and High 
Availability 
 

While ClickHouse delivers exceptional performance on a single server, its architecture is 
designed from the ground up to scale out to massive, multi-petabyte clusters. The distributed 
system capabilities are built on two orthogonal concepts: replication for high availability and 
data durability, and sharding for horizontal scaling of storage and compute resources. This 
design exhibits a "shared-nothing" architecture, where each node is independent and 
self-sufficient, communicating with others over the network without sharing disk or memory. A 
thin coordination layer, provided by ClickHouse Keeper, is used to manage consensus for 
replicated operations. 

 

3.1 Replication with ReplicatedMergeTree 
 

Replication in ClickHouse is the mechanism for achieving high availability and fault tolerance. 
It is implemented at the individual table level through the Replicated*MergeTree family of 
table engines (e.g., ReplicatedMergeTree, ReplicatedSummingMergeTree).4 

●​ Asynchronous Multi-Master Replication: The replication model is asynchronous and 
multi-master. This means that INSERT and ALTER queries can be sent to any available 
replica in the cluster.20 The server that receives the query first writes the data to its local 
disk and then adds a task to a replication queue. Other replicas watch this queue and pull 
the data to apply it locally. This asynchronous nature ensures that write operations are 
not blocked by slow or unavailable replicas, maintaining high ingestion throughput. 

●​ Data Consistency and Deduplication: Replication operates on blocks of inserted data. 
Each block is assigned a unique identifier. The system automatically performs block-level 
deduplication, so if the same data block is sent to multiple replicas (for instance, due to a 
client-side retry), it will only be processed and stored once.4 This makes​
INSERT statements idempotent, which is a crucial property for building reliable data 
pipelines. While data replication is asynchronous, the background merges of data parts 
are coordinated across all replicas to ensure that they are performed identically and in 
the same order, leading to bit-for-bit identical data parts across the cluster over time. 

●​ Scope of Replication: It is important to note that replication applies only to the data 



within tables using a Replicated*MergeTree engine. DDL (Data Definition Language) 
statements like CREATE TABLE or DROP TABLE are not replicated by the engine itself. 
Such statements must be executed on all nodes of a cluster, typically using the ON 
CLUSTER clause, which instructs the initiating node to forward the DDL query to all other 
nodes in the specified cluster.20 For automating DDL replication, ClickHouse provides the​
Replicated database engine, which writes DDL logs to ZooKeeper/Keeper for execution 
on all database replicas.29 

 

3.2 The Role of Clickhouse Keeper/ZooKeeper 
 

To manage the state and coordination required for replication, ClickHouse relies on a 
distributed consensus system. While historically this role was filled by Apache ZooKeeper, the 
recommended and natively integrated solution is ClickHouse Keeper, a C++ implementation 
of the Raft consensus algorithm that is compatible with the ZooKeeper client protocol.20 

The coordination system is the central nervous system for a replicated cluster and performs 
several critical functions: 

●​ Metadata Storage: It stores the metadata for each replicated table, including the list of 
replicas, their health status, and paths to their data in the coordination system.20 

●​ Replication Log: For each shard, it maintains a shared log of operations (e.g., insert a 
block, merge parts). Replicas use this log to determine which actions they need to 
perform to catch up with their peers. 

●​ Leader Election: It facilitates leader election among replicas for tasks that require 
coordination, such as assigning background merges. 

●​ Distributed DDL Coordination: When using the Replicated database engine, it stores 
the log of DDL queries to be executed across replicas. 

For each INSERT into a replicated table, a small number of metadata entries are written to 
Keeper to log the operation.20 However, 

SELECT queries do not interact with the coordination system at all. This design ensures that 
read performance is completely unaffected by the overhead of replication.20 A 
production-grade ClickHouse cluster's availability is directly tied to the availability of its 
Keeper ensemble, which should consist of an odd number of nodes (typically 3 or 5) spread 
across different fault domains.31 

 

3.3 Sharding with the Distributed Engine 



 

Sharding is ClickHouse's strategy for horizontal scaling, allowing a dataset to be partitioned 
across multiple servers (shards). This enables a cluster to handle data volumes and query 
loads far beyond the capacity of a single machine.32 

Unlike replication, sharding is not implemented as a property of the storage engine. Instead, it 
is managed by a special, virtual table engine called the Distributed engine.33 A table created 
with the 

Distributed engine does not store any data itself. It acts as a transparent proxy or a distributed 
query router that forwards requests to the underlying local tables on the various shards. 

The mechanism works as follows: 

●​ Cluster Definition: A cluster, which is a collection of shards and their replicas, is defined 
in the server's configuration file. 

●​ Distributed Table Creation: A Distributed table is created on one or more nodes, 
pointing to this cluster definition and the name of the underlying local tables on the 
shards. 

●​ INSERT Queries: When data is inserted into the Distributed table, the engine uses a 
sharding key specified in the table definition (e.g., rand() for random distribution or 
intHash64(UserID) for consistent hashing) to determine which shard each row should be 
sent to. It then transparently forwards the rows to the appropriate shard.33 

●​ SELECT Queries: When a SELECT query is executed against the Distributed table, the 
engine rewrites the query and sends it in parallel to all shards in the cluster (or a subset, 
if optimizations allow). Each shard executes the query on its local data. The initiating 
node then receives the partial results from all shards and merges them to produce the 
final result set for the client.32 

This separation of the sharding mechanism (Distributed engine) from the replication 
mechanism (ReplicatedMergeTree engine) is a key architectural choice. It provides immense 
flexibility, allowing for complex cluster topologies. For example, a user can have replication 
without sharding (a single, highly-available shard) or sharding without replication (not 
recommended for production). However, this flexibility also places the responsibility on the 
user to correctly configure and understand the interaction between these two layers. A 
common point of confusion is that an INSERT made directly to a local ReplicatedMergeTree 
table will be replicated within its shard but will not be sharded across the cluster. To both 
shard and replicate data, the INSERT must be directed to the Distributed table, which then 
routes the data to the correct shard, where the underlying ReplicatedMergeTree engine takes 
over to handle replication within that shard.33 Operating ClickHouse at scale requires a deep 
understanding of this interaction. 



 

3.4 High Availability Best Practices 
 

Building a robust, production-ready ClickHouse cluster involves combining replication, 
sharding, and operational best practices to mitigate risks of data loss and downtime. Based 
on official documentation and industry experience, the following practices are recommended 
31: 

●​ Component Redundancy: Deploy at least three replicas for each shard to tolerate the 
failure of a single replica while still having a quorum for recovery operations. Similarly, 
deploy a ClickHouse Keeper (or ZooKeeper) ensemble of at least three nodes. 

●​ Fault Domain Isolation: Disperse replicas and Keeper nodes across separate physical 
hardware and, ideally, different availability zones (AZs) or data centers. This prevents a 
single hardware, power, or network failure from taking down multiple components and 
compromising the cluster's availability. 

●​ Low-Latency Networking: Ensure low and consistent network latency (ideally under 
20ms round-trip) between all ClickHouse replicas within a shard and between the 
replicas and the Keeper ensemble. Higher latency can delay write acknowledgments and 
impact performance. 

●​ Backup and Disaster Recovery: Replication protects against node failure but not 
against logical errors like accidental data deletion (DROP TABLE) or data corruption. A 
comprehensive disaster recovery strategy must include regular backups using tools like 
clickhouse-backup, with backups stored in a remote, durable location like an S3 bucket. 

●​ Regular Testing: High availability procedures, including failover and recovery from 
backup, should be regularly tested in a non-production environment to ensure they work 
as expected and that operational teams are proficient in executing them. 

 

Section 4: Performance Optimization Levers 
 

Beyond its core architecture, ClickHouse provides a powerful toolkit of advanced features that 
allow users to fine-tune performance. These are not default settings but rather explicit levers 
that, when applied correctly, can dramatically improve query speed, reduce storage footprint, 
and minimize resource consumption. An expert ClickHouse user must think like a systems 
architect, constantly diagnosing performance bottlenecks and applying the appropriate tool 
to manage the trade-offs between storage, insert-time CPU, and query-time CPU. These 
features form an integrated performance-tuning toolkit that requires a holistic understanding 
of the system's resource trade-offs. 



 

4.1 Data Compression and Encoding 
 

Data compression is a first-order concern for performance in an I/O-bound analytical system. 
ClickHouse's columnar storage format is inherently well-suited for compression, as values of 
the same type are stored contiguously, often exhibiting patterns that compression algorithms 
can exploit effectively.35 The physical sorting of data dictated by the 

ORDER BY key further enhances this effect by grouping identical or similar values together. 

ClickHouse offers granular control over compression at the column level: 

●​ Compression Codecs: Users can specify a compression algorithm for each column 
using the CODEC clause. While the default is LZ4, which is optimized for very high 
compression and decompression speeds, ZSTD often provides a significantly better 
compression ratio with a modest increase in CPU usage.35 For many workloads, the I/O 
savings from​
ZSTD's higher compression outweigh the additional CPU cost. 

●​ Specialized Encodings: Before applying a generic compression algorithm, ClickHouse 
can transform the data using a specialized, data-type-aware encoding to make it more 
compressible.37 These encodings are applied as a stack within the​
CODEC clause (e.g., CODEC(DoubleDelta, ZSTD)). Key encodings include: 
○​ Delta: This encoding stores the difference between consecutive values. It is 

extremely effective for columns with monotonic or slowly changing sequences, such 
as timestamps or counters.37 

○​ DoubleDelta: Stores the difference of the deltas, which is ideal for data with a 
constant rate of change. 

○​ Gorilla: An encoding optimized for floating-point time-series data where values often 
remain constant for periods before changing. 

○​ T64: A unique ClickHouse encoding that analyzes the range of integer values within a 
block and strips unnecessary high-order bits, effectively compacting the data. 

If a query is I/O bound (i.e., spending most of its time reading data from disk), applying more 
effective codecs and encodings is the primary optimization strategy. This trades a small 
amount of CPU at insert time for a significant reduction in I/O at query time. 

 

4.2 Materialized Views for Pre-computation 
 



For queries that are CPU-bound due to expensive aggregations, Materialized Views (MVs) are 
the primary optimization tool. MVs shift the computational cost from read time to write time by 
pre-calculating and storing the results of a query.39 ClickHouse supports two distinct types of 
materialized views. 

●​ Incremental Materialized Views: This is the most common and powerful type of MV in 
ClickHouse. It functions as an insert trigger on a source table. When a new block of data 
is inserted into the source table, the MV's defining SELECT query is executed only on that 
new block. The partial result of this query is then inserted into a separate target table.39 
This target table is almost always an​
AggregatingMergeTree or SummingMergeTree engine, which is designed to merge these 
incoming partial results in the background over time.23 This mechanism provides a form 
of continuous, real-time aggregation, making it ideal for powering dashboards and other 
applications that require fast access to up-to-date summary data. 

●​ Refreshable Materialized Views: This newer type is more analogous to materialized 
views in traditional databases like PostgreSQL. A refreshable MV re-executes its entire 
defining query over the full source dataset on a user-defined schedule (e.g., REFRESH 
EVERY 1 HOUR).40 Each time it runs, it replaces the contents of its target table with the 
new result set. This approach is suitable for complex queries, such as those involving 
resource-intensive​
JOINs, that are not amenable to incremental processing. It is also useful when some 
degree of data staleness is acceptable and the cost of the full re-computation can be 
borne during off-peak hours. 

 

4.3 Dictionaries for High-Speed Lookups 
 

For queries that are CPU-bound due to JOIN operations, particularly those involving a large 
fact table and a smaller dimension or enrichment table, ClickHouse Dictionaries offer a highly 
performant alternative. 

●​ In-Memory Key-Value Stores: A Dictionary is an in-memory data structure that maps a 
key to one or more attributes.42 Dictionaries are loaded into RAM from a variety of 
sources, including another ClickHouse table, an external database, or a flat file, and are 
periodically refreshed to stay in sync with the source.43 

●​ High-Speed Lookups with dictGet(): Instead of writing a JOIN in a query, a user can 
enrich data using special functions like dictGet('dictionary_name', 'attribute_name', 
key_expression). Because the dictionary resides in a highly optimized in-memory hash 
map, these lookups are extremely fast—often orders of magnitude faster than executing 
a traditional JOIN plan, which involves more complex algorithms and potential disk I/O.42 

●​ Layouts and Use Cases: ClickHouse provides various dictionary layouts optimized for 



different use cases, such as flat and hashed for simple key-value lookups, range_hashed 
for matching against date ranges, and ip_trie for efficient IP prefix matching.43 Using a 
dictionary effectively trades server RAM (to store the dictionary) for a massive reduction 
in query-time CPU and latency. 

 

Section 5: Architectural Context and Design 
Trade-offs 
 

To fully appreciate the internal design of ClickHouse, it is essential to place it in the context of 
the broader analytical database landscape. Its architecture represents a unique set of design 
choices and trade-offs when compared to other prominent systems like Apache Druid, 
Apache Pinot, and Snowflake. This comparative analysis highlights ClickHouse's specific 
strengths and clarifies its ideal use cases. The fundamental differences between these 
systems are summarized in Table 3. 

Table 3: Architectural Comparison of Analytical Databases 

Dimension ClickHouse Apache Druid / 
Pinot 

Snowflake 

Architecture Coupled 
Storage/Compute 
(evolving in Cloud) 

Decoupled, 
multi-component 
microservices with 
deep storage 

Fully decoupled 
multi-cluster, 
shared data 
architecture 

Primary Use Case Real-time, 
user-facing 
interactive 
analytics 

Real-time analytics 
on streaming/event 
data 

Enterprise BI, data 
warehousing, 
high-throughput 
batch analytics 

Ingestion Model Optimized for 
micro-batch 
ingestion 

Built for true 
real-time, 
event-by-event 
streaming ingestion 

Optimized for large 
batch loads; 
supports 
micro-batching 
(Snowpipe) 

Query Rich SQL dialect Limited SQL; JOIN ANSI SQL with full, 



Language/JOINs with strong JOIN 
support 

support is 
restricted or less 
performant 

powerful JOIN 
support 

Scalability Model Add identical nodes 
(shards/replicas); 
manual rebalancing 

Independent 
scaling of 
ingestion, query, 
and storage nodes 

Instant, elastic 
scaling of isolated 
compute ("virtual 
warehouses") 

Management 
Overhead 

High; requires 
significant 
expertise in tuning 
and operations 

Very High; complex 
multi-component 
deployment and 
management 

Low; fully managed 
SaaS that abstracts 
away infrastructure 

 

5.1 ClickHouse vs. Real-Time OLAP Systems (Druid, Pinot) 
 

Apache Druid and Apache Pinot are OLAP systems designed specifically for real-time 
analytics on high-volume, streaming event data. While they share the goal of low-latency 
queries with ClickHouse, their architectural philosophies differ significantly. 

●​ Architectural Complexity: Druid and Pinot feature complex, distributed, 
microservice-based architectures.45 They are composed of multiple distinct node types 
with specialized roles (e.g., Broker nodes for query routing, Historical nodes for serving 
historical data, and Real-time nodes for ingestion).47 This design relies on an external 
"deep storage" layer, such as HDFS or S3, for data persistence. In contrast, ClickHouse 
has a much simpler, more monolithic architecture, typically deployed as a single binary 
on a cluster of identical nodes, which are responsible for both storage and compute.45 
This makes ClickHouse easier to deploy and manage initially, but the modularity of 
Druid/Pinot allows for more granular, independent scaling of different system functions. 

●​ Ingestion Model: Druid and Pinot are architected for true real-time, event-by-event 
ingestion, making data available for querying almost instantaneously.46 ClickHouse, while 
capable of handling streaming data via its Kafka engine, performs best when data is 
ingested in micro-batches of at least a thousand rows at a time to optimize the creation 
of​
MergeTree parts.45 This makes Druid and Pinot a more natural fit for use cases where 
sub-second data freshness is an absolute requirement. 

●​ Query Capabilities: ClickHouse offers a more mature and comprehensive SQL dialect, 
including robust support for complex, multi-table JOINs.51 Druid and Pinot have 



historically had more limited​
JOIN capabilities, focusing primarily on high-performance filtering and aggregation on a 
single, denormalized fact table.49 This makes ClickHouse more versatile for exploratory 
analytics and workloads that require combining different datasets. 

 

5.2 ClickHouse vs. Cloud Data Warehouses (Snowflake) 
 

Snowflake represents the modern, fully managed cloud data warehouse, and its design 
philosophy contrasts sharply with that of ClickHouse. 

●​ Core Architectural Difference: Coupled vs. Decoupled: The most fundamental 
distinction is the separation of storage and compute. Snowflake pioneered the 
multi-cluster, shared data architecture, where all data resides in a central object storage 
layer (like S3), and multiple, independent "virtual warehouses" (compute clusters) can 
access this data concurrently.55 This allows for seamless, independent scaling of storage 
and compute resources. Traditional open-source ClickHouse, in contrast, follows a 
coupled, shared-nothing architecture where storage (local disk) and compute reside on 
the same nodes. It is important to note, however, that the managed ClickHouse Cloud 
offering is evolving this model by also leveraging object storage, which begins to blur this 
architectural line.55 

●​ Performance and Use Case Focus: This architectural difference dictates their ideal use 
cases. ClickHouse is a performance-engineered engine optimized for extreme 
low-latency, sub-second queries. Its design is tailored for powering interactive, 
user-facing analytical applications where responsiveness is paramount.55 Snowflake is 
optimized for high-throughput, large-scale Business Intelligence (BI) and data 
warehousing queries. It excels at handling complex, long-running queries and high user 
concurrency, where query latencies of several seconds or even minutes are often 
acceptable.50 

●​ Management and Tuning: ClickHouse is a "system for engineers," exposing a vast array 
of configuration settings, engine choices, and indexing strategies that require significant 
expertise to tune for optimal performance.56 Snowflake is a fully managed SaaS platform 
that abstracts away nearly all of this complexity. It provides simple "T-shirt sized" 
compute warehouses and handles most optimization automatically, making it far easier to 
operate but offering less granular control.50 

These comparisons reveal the unique niche that ClickHouse occupies. It is neither a pure 
stream-processing engine like Druid nor a managed, high-throughput BI warehouse like 
Snowflake. It is best described as a "user-facing data warehouse" engine. Its architecture is 
tailored for applications that need to execute complex analytical queries, including JOINs, 
over massive, rapidly ingested datasets and return results in milliseconds to power an 



interactive user experience. This demanding and growing market segment sits squarely 
between traditional BI and pure stream processing, and it is here that ClickHouse's specific 
set of architectural trade-offs provides a compelling solution. 

 

Conclusion: Synthesizing the Internals for Optimal Use 
 

The internal architecture of ClickHouse is a masterclass in purpose-built design for 
high-performance analytical query processing. Its efficacy stems from a cohesive set of 
foundational principles that are consistently applied across every layer of the system. The 
strict adherence to a columnar data model, from physical disk storage to in-memory 
representation, enables both remarkable data compression and the system's primary 
performance driver: vectorized query execution. This model, which processes data in batches 
rather than row-by-row, maximizes the use of modern CPU capabilities and is the key to its 
sub-second query speeds. 

The MergeTree engine family stands as the core of the storage layer, its LSM Tree-based 
design providing exceptionally high ingestion throughput by deferring the cost of data 
organization to an asynchronous background process. This core design is ingeniously 
extended by a family of specialized engines that introduce mutation-like semantics—such as 
deduplication, pre-aggregation, and state-change tracking—into an append-only, immutable 
world, albeit with a trade-off of eventual consistency that users must actively manage. 

A deep understanding of these internals is not merely an academic exercise; it is the 
prerequisite for unlocking the full potential of ClickHouse. The analysis reveals several critical 
takeaways for architects and engineers: 

●​ Schema Design is Paramount: The tight coupling of the physical data sort order with 
the primary index means that the choice of the ORDER BY key is the single most 
impactful decision in schema design. A well-chosen key, ordered from low to high 
cardinality, is the foundation of all query performance. 

●​ Optimization is a Multi-faceted Discipline: Performance tuning in ClickHouse is a 
systematic process of diagnosing bottlenecks and applying the appropriate lever. The 
comprehensive EXPLAIN toolkit provides the necessary transparency to determine if a 
query is bound by I/O (addressable with compression codecs), CPU-intensive 
aggregations (addressable with Materialized Views), or complex JOINs (addressable with 
Dictionaries). 

●​ Distributed Operations Require Nuanced Understanding: Scaling ClickHouse 
effectively requires a clear comprehension of the distinct and orthogonal roles of 
replication (via ReplicatedMergeTree for high availability) and sharding (via the 
Distributed engine for horizontal scale). The interaction between these two layers must 



be correctly configured to build a robust and performant cluster. 

In essence, ClickHouse's architectural philosophy is one of performance through 
transparency and tune-ability. It provides powerful automated optimizations but also gives 
expert users the visibility and control to fine-tune every aspect of its operation. By mastering 
these internal mechanisms, users can build analytical systems that meet the most demanding 
requirements for speed, scale, and real-time responsiveness. 
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